已知定义在R上的函数是奇函数,对x∈R都有f(2+x)=f(2-x),当f(1)=-2时,
f(2007)的值为
2
【解析】
试题分析:因为对x∈R都有f(2+x)=f(2-x),所以函数的对称轴为x=2,所以………………①
因为函数是奇函数,所以=-f(-x)……………………②
由①②得:,所以函数的周期为8.
又因为函数是奇函数,对x∈R都有f(2+x)=f(2-x),
所以f(2007)="f(7)=" f(-3)="-" f(3)="-" f(1)=2.
考点:函数的 奇偶性;函数的对称性;函数的周期性。
点评:本题主要考查函数的奇偶性、单调性、和对称性的综合应用。若对定义域内的任意x有,则可得为周期函数且函数的周期;若对定义域内的任意x有,则可得的对称轴为x=2;若对定义域内的任意x有,则可得的对称中心为(2,0)。
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
A、-2 | B、2 | C、4 | D、-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
A、0 | B、2013 | C、3 | D、-2013 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com