【题目】如图所示,在底面为正方形的四棱锥P—ABCD中,AB=2,PA=4,PB=PD=,AC与BD相交于点O,E,G分别为PD,CD中点,
(1)求证:EO//平面PBC;
(2)设线段BC上点F满足BC=3BF,求三棱锥E—OFG的体积.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面ABCD是边长为6的菱形,且,平面ABCD,,F是棱PA上的一个动点,E为PD的中点.
Ⅰ求证:.
Ⅱ若.
求PC与平面BDF所成角的正弦值;
侧面PAD内是否存在过点E的一条直线,使得该直线上任一点M与C的连线,都满足平面BDF,若存在,求出此直线被直线PA、PD所截线段的长度,若不存在,请明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆C与抛物线E的准线交于M、N两点,△MNF的面积为p,其中F是E的焦点.
(1)求抛物线E的方程;
(2)不过原点O的动直线l交该抛物线于A,B两点,且满足OA⊥OB,设点Q为圆C上任意一动点,求当动点Q到直线l的距离最大时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线C的参数方程和直线的直角坐标方程;
(2)若直线与轴和y轴分别交于A,B两点,P为曲线C上的动点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,过F点的直线交抛物线于不同的两点A、B,且,点A关于轴的对称点为,线段的中垂线交轴于点D,则D点的坐标为
A. (2,0)B. (3,0)C. (4,0)D. (5,0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.
(Ⅰ)求C的普通方程和直线的倾斜角;
(Ⅱ)设点(0,2),和交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校随机抽取部分男生测试立定跳远,将成绩整理得到频率分布表如表,测试成绩在220厘米以上(含220厘米)的男生定为“合格生”,成绩在260厘米以上(含260厘米)的男生定为“优良生”.
分组(厘米) | 频数 | 频率 |
[180,200) | 0.10 | |
[200,220) | 15 | |
[220,240) | 0.30 | |
[240,260) | 0.30 | |
[260,280) | 0.20 | |
合计 | 1.00 |
(1)求参加测试的男生中“合格生”的人数.
(2)从参加测试的“合格生”中,根据表中分组情况,按分层抽样的方法抽取8名男生,再从这8名男生中抽取3名男生,记X表示3人中“优良生”的人数,求X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com