【题目】如图,四棱柱中,平面,四边形为平行四边形,,.
(1)若,求证:平面;
(2)若,,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知,,其中,函数与关于直线对称.
(1)若函数在区间上递增,求a的取值范围;
(2)证明:;
(3)设,其中恒成立,求满足条件的最小正整数b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点与定点的距离和它到直线的距离的比是常数,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于,两点,设的中点为,,两点为曲线上关于原点对称的两点,且(),求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD为等边三角形,平面ABCD⊥平面PAD;点E、M分别为PD、PC的中点.
(1)证明:CE//平面PAB;
(2)求三棱锥M﹣BAD的体积;
(3)求直线DM与平面ABM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数,).
(1)若曲线与直线的一个交点纵坐标为,求的值;
(2)若曲线上的点到直线的最大距离为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中为常数,为自然对数的底数,)
(1)若对任意,不等式恒成立,求实数的取值集合,
(2)已知正数满足:存在,使不等式成立.
①求的取值集合;
②试比较与的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与双曲线有相同的焦点坐标,且点在椭圆上.
(1)求椭圆的标准方程;
(2)设A、B分别是椭圆的左、右顶点,动点M满足,垂足为B,连接AM交椭圆于点P(异于A),则是否存在定点T,使得以线段MP为直径的圆恒过直线BP与MT的交点Q,若存在,求出点T的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com