精英家教网 > 高中数学 > 题目详情
4.点P在曲线ρcosθ+2ρsinθ=3上,其中0≤θ≤$\frac{π}{4}$,ρ>0,则点P轨迹是(  )
A.直线x+2y-3=0B.以(3,0)为端点的射线
C.圆(x-2)2+y2=1D.以(1,1),(3,0)为端点的线段

分析 由极坐标和直角坐标的关系:x=ρcosθ,y=ρsinθ,代入曲线方程,再由y=0和y=x,解得两交点,即可得到所求轨迹.

解答 解:由极坐标和直角坐标的关系:x=ρcosθ,y=ρsinθ,
ρcosθ+2ρsinθ=3即为x+2y-3=0,
由0≤θ≤$\frac{π}{4}$,ρ>0,可得
令y=0,解得x=3;令y=x,可得x=y=1.
可得点P轨迹是以(1,1),(3,0)为端点的线段.
故选:D.

点评 本题考查直角坐标和极坐标的互化,注意运用两直线的交点,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知等差数列{an}满足a2+a7=a5+3,则a4=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}},{-1<x≤1}\\{f(x-2)+1},{1<x≤3}\end{array}\right.$,则函数g(x)=f(f(x))-2在区间(-1,3]上的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x>1,则函数y=$\frac{{x}^{2}+8}{x-1}$的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{lo{g}_{\frac{1}{3}}(x-2)}$的定义域为A,函数g(x)=($\frac{1}{2}$)x(x≥-2)的值域为B.
(1)求(∁RA)∩B;
(2)若集合C={x|a≤x≤2a-2}且A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知变量x与y线性相关,且满足如下数据表:
x012m
y126n
若y与x的回归直线必经过点($\frac{3}{2}$,4),则m+n=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=cosx•sin(x+$\frac{π}{6}$),则函数f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{lg(x+1)}{\sqrt{x-1}}$的定义域为(  )
A.(-1,+∞)B.(-1,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.祖暅,字景烁,祖冲之之子,南北朝时代的伟大科学家.祖暅在数学上有突出的贡献,他在实践的基础上,于5世纪末提出下面的计算原理:祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,请同学们用祖暅原理解决如下问题:如图,有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,再注入水,使水面与球正好相切(而且球与倒圆锥相切效果很好,水不能流到倒圆锥容器底部),然后将球取出,则这时容器中水的深度为$\root{3}{15}$r.

查看答案和解析>>

同步练习册答案