【题目】已知函数,其中,,e为自然对数的底数.
(1)若,且当时,总成立,求实数a的取值范围;
(2)若,且存在两个极值点,,求证:
【答案】(1) ;(2)见解析.
【解析】
(1)由已知可得 ,只需对与0的大小关系分类讨论,确定函数的单调性,从而确定函数的最小值,即可求出实数a的取值范围;
(2)根据,是的根,可得与的关系及其范围,进而可将用含有的式子表示,构造函数即可证出.
(1)若,则,
所以,
因为,,
所以当,即时,,
所以函数在上单调递增,所以,符合题意;
当,即时,时,;时,,
所以函数在上单调递减,在上单调递增,
所以,不符合题意,
综上:实数a的取值范围为.
(2) 若,则,
所以,
因为存在两个极值点,所以,所以,
令,得,
所以是方程的两个根,
所以,,且,,
不妨设,则,
所以
,
令,
所以,
所以在上单调递增,所以,
所以,又,
所以.
科目:高中数学 来源: 题型:
【题目】某药业公司统计了2010-2019年这10年某种疾病的患者人数,结论如下:该疾病全国每年的患者人数都不低于100万,其中有3年的患者人数低于200万,有6年的患者人数不低于200万且低于300万,有1年的患者人数不低于300万.
(1)药业公司为了解一新药品对该疾病的疗效,选择了200名患者,随机平均分为两组作为实验组和对照组,实验结束时,有显著疗效的共110人,实验组中有显著疗效的比率为70%.请完成如下的2×2列联表,并根据列联表判断是否有99.9%把握认为该药品对该疾病有显著疗效;
实验组 | 对照组 | 合计 | |
有显著疗效 | |||
无显著疗效 | |||
合计 | 200 |
(2)药业公司最多能引进3条新药品的生产线,据测算,公司按如下条件运行生产线:
该疾病患者人数(单位:万) | |||
最多可运行生产线数 | 1 | 2 | 3 |
每运行一条生产线,可产生年利润6000万元,没运行的生产线毎条每年要亏损1000万元.根据该药业公司这10年的统计数据,将患者人数在以上三段的频率视为相应段的概率、假设各年的患者人数相互独立.欲使该药业公司年总利润的期望值达到最大,应引进多少条生产线?
附:参考公式:,其中.
0.05 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数),直线l与曲线C相交于A,B两点.
(1)求的长;
(2)求点到A,B两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数有下述四个结论:
①函数的图象把圆的面积两等分
②是周期为的函数
③函数在区间上有3个零点
④函数在区间上单调递减
其中所有正确结论的编号是( )
A.①③④B.②④C.①④D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);
(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;
(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,关于函数有下列结论:
①,;
②函数的图象是中心对称图形,且对称中心是;
③若是的极大值点,则在区间单调递减;
④若是的极小值点,且,则有且仅有一个零点.
其中正确的结论有________(填写出所有正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com