精英家教网 > 高中数学 > 题目详情
3、设f(x)是R上的任意函数,则下列叙述正确的是(  )
分析:令题中选项分别为F(x),然后根据奇偶函数的定义即可得到答案.
解答:解:A中令F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),
即函数F(x)=f(x)f(-x)为偶函数,
B中F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定,
C中令F(x)=f(x)-f(-x),令F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数,
D中F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数,
故选D.
点评:本题考查了函数的定义和函数的奇偶性的判断,同时考查了函数的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市启东中学高一(上)期中数学试卷(解析版) 题型:解答题

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省扬州中学高一(上)期末数学试卷(解析版) 题型:解答题

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十一校高三联考数学试卷(解析版) 题型:解答题

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

同步练习册答案