精英家教网 > 高中数学 > 题目详情

由函数确定数列.若函数能确定数列,则称数列是数列的“反数列”.
(1)若函数确定数列的反数列为,求
(2)对(1)中的,不等式对任意的正整数恒成立,求实数的取值范围;
(3)设为正整数),若数列的反数列为的公共项组成的数列为(公共项为正整数),求数列的前项和.

(1);(2);(3)   

解析试题分析:(1)本题实质是求函数的反函数;(2)不等式恒成立,因此小于不等式左边的最小值,所以我们一般想办法求左边这个和,然而由(1)知,这个和求不出,那么我们只能从另一角度去思考,看的单调性,这里只要作差就可得出是递增数列,所以的最小值是,问题解决;(3)看起来很复杂,实质上由于取值只能是0和1,因此我们按的奇偶性分类讨论,问题就简化了,例如当为奇数时,,则,就可求出,从而求出的前项和了.
试题解析:(1),则;4分
(2)不等式化为:,5分
,因为
所以单调递增,                                    7分
.因此,即.因为
所以.            10分
(3)当为奇数时,.       11分
,则
,因此,                      13分
所以                                         14分
为偶数时,.                   15分
,即,因此,  17分
所以                                   18分
考点:(1)反函数;(2)数列的单调性;(3)分类讨论,等差数列与等比数列的前项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求dan
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足恰好是等比数列的前三项.
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,数列{bn}的前n项和Tn,求满足不等式的最大n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是公比为正数的等比数列,.
(1)求数列的通项公式;
(2)若数列满足:,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列为等差数列,且;数列的前n项和为,且
(I)求数列的通项公式;
(II)若为数列的前n项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,已知时,.数列满足:
(1)证明:为等差数列,并求的通项公式;
(2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列,等比数列中,.
(1)求
(2)设为数列的前项和,,求.

查看答案和解析>>

同步练习册答案