由函数确定数列,.若函数能确定数列,,则称数列是数列的“反数列”.
(1)若函数确定数列的反数列为,求;
(2)对(1)中的,不等式对任意的正整数恒成立,求实数的取值范围;
(3)设(为正整数),若数列的反数列为,与的公共项组成的数列为(公共项为正整数),求数列的前项和.
(1);(2);(3)
解析试题分析:(1)本题实质是求函数的反函数;(2)不等式恒成立,因此小于不等式左边的最小值,所以我们一般想办法求左边这个和,然而由(1)知,这个和求不出,那么我们只能从另一角度去思考,看的单调性,这里只要作差就可得出是递增数列,所以的最小值是,问题解决;(3)看起来很复杂,实质上由于和取值只能是0和1,因此我们按的奇偶性分类讨论,问题就简化了,例如当为奇数时,,则,就可求出,从而求出的前项和了.
试题解析:(1),则;4分
(2)不等式化为:,5分
设,因为,
所以单调递增, 7分
则.因此,即.因为,
所以,得. 10分
(3)当为奇数时,,. 11分
由,则,
即,因此, 13分
所以 14分
当为偶数时,,. 15分
由得,即,因此, 17分
所以 18分
考点:(1)反函数;(2)数列的单调性;(3)分类讨论,等差数列与等比数列的前项和.
科目:高中数学 来源: 题型:解答题
在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设各项均为正数的数列的前项和为,满足且恰好是等比数列的前三项.
(Ⅰ)求数列、的通项公式;
(Ⅱ)记数列的前项和为,若对任意的,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,数列{bn}的前n项和Tn,求满足不等式≥的最大n值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
)已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
数列中,已知,时,.数列满足:.
(1)证明:为等差数列,并求的通项公式;
(2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com