精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数处的切线方程为,求实数的值;
(2)若在其定义域内单调递增,求的取值范围.

(1) (2) 

解析试题分析:(1)
由已知         5分
(2)的定义域.
,当恒成立,即恒成立。
由于当且仅当,即时取等号。
                                 5分
考点:本题考查了导数的运用
点评:已知函数单调求参数范围时,要在定义域区间上令,因在定义域范围内有限个导数等于零的点不影响其单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求函数在下列定义域内的值域。
(1)函数y=f(x)的值域
(2)(其中)函数y=f(x)的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上奇函数与偶函数,对任意满足+a为实数
(1)求奇函数和偶函数的表达式
(2)若a>2, 求函数在区间上的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-x+3x+9x+a
⑴求f(x)的单调递减区间;⑵若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在[-1,1]上的奇函数满足,且当时,有
(1)试问函数f(x)的图象上是否存在两个不同的点AB,使直线AB恰好与y轴垂直,若存在,求出AB两点的坐标;若不存在,请说明理由并加以证明.
(2)若对所有恒成立,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若,写出函数的单调递增区间(不必证明);
(2)若,当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)判断的奇偶性
(2)用定义法证明上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数上的最小值;
(2)对一切恒成立,求实数的取值范围;
(3)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且.
(1)求的值;
(2)若令,求取值范围;
(3)将表示成以)为自变量的函数,并由此,求函数的最大值与最小值及与之对应的x的值.

查看答案和解析>>

同步练习册答案