【题目】函数f(x)=Asin(ωx)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)的单调增区间;
(3)设α∈(0,),则f()=2,求α的值.
【答案】(1)y=2sin(2x)+1(2)函数f(x)的单调增区间:k∈Z(3)α
【解析】
(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值;
(2)利用整体思想结合单调递增区间,即可求解;
(3)由,求出关于的三角函数值,结合的范围,即可求出结论.
(1)∵函数f(x)的最大值为3,
∴A+1=3,即A=2.
∵函数图象的相邻两条对称轴之间的距离为,
∴最小正周期T=π,∴ω=2.
故函数f(x)的解析式为y=2sin(2x)+1;
(2)由,,
得,
∴,.
∴函数f(x)的单调增区间:k∈Z;
(3)∵f()=2sin(α)+1=2,即sin(α),
∵0<α,∴,
∴α,故α.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面是矩形,侧面PAD为等边三角形,AB=,AD=, PB=.
(1)求证:平面PAD⊥平面ABCD;
(2)M是棱PD上一点,三棱锥M-ABC的体积为1.记三棱锥P-MAC的体积为,三棱锥M-ACD的体积为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC三个内角A、B、C所对的边分别为已知
(1)求角B的大小;
(2)如图,在△ABC内取一点P,使得PB=2,过点P分别作直线BA、BC的垂线PM、PN,垂足分别是M、N,设∠PBA=求四边形PMBN的面积的最大值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题为真命题的是( )
A.设命题:,.则:,;
B.若,,则;
C.若是定义在上的减函数,则“”是“”的充要条件;
D.若,,()是全不为0的实数,则“”是“不等式和解集相等”的充分不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】青岛二中有羽毛球社乒乓球社和篮球社,三个社团的人数分别为27,9,18,现采用分层抽样的方法从这三个社团中抽取6人参加活动.
(1)求应从这三个社团中分别抽取的学生人数;
(2)将抽取的6名学生进行编号,编号分别为,,,,,,从这6名学生中随机抽出2名参加体育测试.
①用所给的编号列出所有可能的结果;
②设事件是“编号为,的两名学生至少有一人被抽到”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在实数集上的函数,恒不为0,若存在不等于1的正常数,对于任意实数,等式恒成立,则称函数为函数.
(1)若函数为函数,求出的值;
(2)设,其中为自然对数的底数,函数.
①比较与的大小;
②判断函数是否为函数,若是,请证明;若不是,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),且AC=BC,则△ABC的欧拉线的方程为( )
A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知点A的极坐标(,),直线l的极坐标方程为ρcos(θ-)=a,.
(1)若点A在直线l上,求直线l的直角坐标方程;
(2)圆C的参数方程为(为参数),若直线与圆C相交的弦长为,求的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com