【题目】已知函数y=log2(ax2﹣2x+2)的定义域为Q.
(1)若a>0且[2,3]∩Q=,求实数a的取值范围;
(2)若[2,3]Q,求实数a的取值范围.
【答案】
(1)
解:由题意,a>0,Q(﹣∞,2)∪(3,+∞),
∴ ,∴a≥ ;
(2)
解:由已知Q={x|ax2﹣2x+2>0},
若PQ,则说明不等式ax2﹣2x+2>0在x∈[2,3]上恒成立,
即不等式a> 在x∈[2,3]上恒成立,
令u= ,则只需a>umax即可.
又u= =﹣2( ﹣ )2+ .
当x∈[2,3]时, ∈[ , ],从而x=2时,umax= ,
∴a> ,
所以实数a的取值范围是a> .
【解析】(1)由题意,a>0,Q(﹣∞,2)∪(3,+∞),即可求实数a的取值范围;(2)PQ,则说明不等式ax2﹣2x+2>0在x∈[2,3]上恒成立,分离参数后转化为函数最值问题即可解决.
科目:高中数学 来源: 题型:
【题目】已知△ABC中,a、b、c分别为角A、B、C所在的对边,且a=4,b+c=5,tanB+tanC+ = tanBtanC,则△ABC的面积为( )
A.
B.3
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:实数x满足x2﹣5ax+4a2<0,其中a>0,命题q:实数x满足 . (Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函数y=f(x)图象的一个对称中心到它对称轴的最近距离为 .
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB= ,a= ,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=2,an+1= (n∈N+).
(1)计算a2 , a3 , a4 , 并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是方程 的两个不等实根,函数的定义域为.
(1)当时,求函数的最值;
(2)试判断函数在区间的单调性;
(3)设,试证明:对于,若,则.
(参考公式: ,当且仅当时等号成立)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,A(1,3),BC边所在的直线方程为y﹣1=0,AB边上的中线所在的直线方程为x﹣3y+4=0. (Ⅰ)求B,C点的坐标;
(Ⅱ)求△ABC的外接圆方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com