精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的五面体中,面ABCD为直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是边长为2的正三角形.
(Ⅰ)证明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.

【答案】证明:(Ⅰ)取AD中点O,以O为原点,OA为x轴, 过O作AB的平行线为y轴,OE为z轴,
建立空间直角坐标系,

则B(1,1,0),E(0,0, ),A(1,0,0),
C(﹣1,2,0),F(0,4, ),
=(﹣1,﹣1, ), =(﹣1,4, ),
=(﹣2,2,0),
=1﹣4+3=0, =2﹣2=0,
∴BE⊥AF,BE⊥AC,
又AF∩AC=A,∴BE⊥平面ACF.
解:(Ⅱ) =(﹣2,1,0), =(﹣1,3, ),
设平面BCF的法向量 =(x,y,z),
,取x=1,得 =(1,2,﹣ ),
平面ABC的法向量 =(0,0,1),
设二面角A﹣BC﹣F的平面角为θ,
则cosθ= = =
∴二面角A﹣BC﹣F的余弦值为
【解析】(Ⅰ)取AD中点O,以O为原点,OA为x轴,过O作AB的平行线为y轴,OE为z轴,建立空间直角坐标系,利用向量法能证明BE⊥平面ACF.(Ⅱ)求出平面BCF的法向量和平面ABC的法向量,利用向量法能求出二面角A﹣BC﹣F的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+bx2+cx+d的图象如图,则函数g(x)=log (x2+ bx+ )的单调递增区间为(

A.[﹣2,+∞)
B.(﹣∞,﹣2)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=,定义ST=0;若T={t1 , t2 , …,tk},定义ST= + +…+ .例如:T={1,3,66}时,ST=a1+a3+a66 . 现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T{1,2,…,k},求证:ST<ak+1
(3)设CU,DU,SC≥SD , 求证:SC+SCD≥2SD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:x0∈(0,+∞),x0+ >3;命题q:x∈(2,+∞),x2>2x , 则下列命题为真的是(
A.p∧(¬q)
B.(¬p)∧q
C.p∧q
D.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,a∈R.
(1)若a≠0,求函数f(x)的单调递增区间;
(2)若a=0,x1<x<x2<2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设离散型随机变量X的分布列为

X

1

2

3

P

P1

P2

P3

则EX=2的充要条件是(
A.P1=P2
B.P2=P3
C.P1=P3
D.P1=P2=P3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足an+1=an2﹣an+1(n∈N*),Sn为{an}的前n项和.证明:对任意n∈N*
(I)当0≤a1≤1时,0≤an≤1;
(II)当a1>1时,an>(a1﹣1)a1n1
(III)当a1= 时,n﹣ <Sn<n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=a2lnx+ax(a≠0),g(x)= 2tdt,F(x)=g(x)﹣f(x).
(1)试讨论F(x)的单调性;
(2)当a>0时,﹣e2≤F(x)≤1﹣e在x∈[1,e]恒成立,求实数a的取值.

查看答案和解析>>

同步练习册答案