精英家教网 > 高中数学 > 题目详情

【题目】已知正三棱锥P﹣ABC,点P、A、B、C都在半径为的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为(  )
A.
B.
C.
D.

【答案】C
【解析】∵正三棱锥P﹣ABC,PA,PB,PC两两垂直,
∴此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接球O,
∵球O的半径为
∴正方体的边长为2,即PA=PB=PC=2,
球心到截面ABC的距离即正方体中心到截面ABC的距离,
设P到截面ABC的距离为h,则正三棱锥P﹣ABC的体积V=S△ABC×h=S△PAB×PC=××2×2×2=
△ABC为边长为2的正三角形,S△ABC=×(22=2
∴h=
∴球心(即正方体中心)O到截面ABC的距离为-=
故选:C.
利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,然后利用等体积法可实现此计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点Pn(an,bn)满足an+1=an·bn+l ,bn+l =(nN*)且点P1的坐标为(1,-1).

(1)求过点P1,P2的直线l的方程;

(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数;当d<0时,m恒为正数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的T值为(  )

A.30
B.54
C.55
D.91

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2ax﹣x2+lnx,a为常数.
当a=时,求f(x)的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数,是自然对数的底数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若函数内存在两个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC对应边分别为abc

1)若a=14b=40cosB=,求cosC

2)若a=3b=B=2A,求c的长度.

查看答案和解析>>

同步练习册答案