精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

若直线PBCD所成角的大小为BC的长;

(Ⅱ)求二面角BPDA的余弦值.

【答案】122

【解析】

试题分析:(1)以为单位正交基底,建立空间直角坐标系.设,则,利用空间向量夹角余弦公式列方程求解即可;(2)分别求出平面PBD与平面PAD的一个法向量,根据空间向量夹角余弦公式,可得结果.

试题解析:解:(1)以{ }为单位正交基底,建立如图所示的空间直角坐标系Axyz.因为APABAD1,所以A(000)B(100)D(010)P(001).设C(1y0),则(10,-1) (11y0). …………………2分

因为直线PBCD所成角大小为

所以|cos< || |

解得y2y0(舍),

所以C(1,2,0),所以BC的长为2.

(2)设平面PBD的一个法向量为n1=(xyz).

因为(10,-1) (01,-1)

x1,则y=1,z1,所以n1=(1,1,1).

因为平面PAD的一个法向量为n2=(1,0,0),

所以cos<n1n2>=

所以,由图可知二面角BPDA的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx(其中常数a,b∈R),g(x)=f(x)﹣f′(x)是奇函数,
(1)求f(x)的表达式;
(2)求g(x)在[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中是自然常数,

(1)时,求的单调性和极值;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的右焦点F(1,0),离心率为 ,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.

(1)求椭圆的方程;
(2)证明:直线MN必过定点,并求出此定点坐标;
(3)若弦AB,CD的斜率均存在,求△FMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x﹣y+1=0相交的弦长为2 ,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.

f(x)=t1t2

(Ⅰ)求f(x)的解析式,并写出其定义域;

(Ⅱ)当x等于多少时,f(x)取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若CD=2,DB=4 ,求四棱锥F﹣ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln x+ (a>0).

(1)求函数f(x)的极值;

(2)若对任意的x>0,恒有ax(2-ln x)≤1,求实数a的取值范围;

(3)是否存在实数a,使得函数f(x)[1,e]上的最小值为0?若存在,试求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+mx+1=0有两个不等的负根,命题q:4x2+4(m﹣2)x+1=0无实根,P且q为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案