精英家教网 > 高中数学 > 题目详情
设△ABC的三个内角A,B,C所对边的长分别是a,b,c,且
a
cosA
=
c
sinC
,那么A=
 
分析:根据正弦定理得到一个关于a与c的关系式,与已知的等式比较后,得到tanA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.
解答:解:根据正弦定理得:
a
sinA
=
c
sinC

a
cosA
=
c
sinC
,得到sinA=cosA,即tanA=1,
由A∈(0,π),得到A=
π
4

故答案为:
π
4
点评:此题考查学生灵活运用正弦定理化简求值,灵活运用同角三角函数间的基本关系及特殊角的三角函数值化简求值,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C对边分别是a,b,c,已知
a
sinA
=
3
b
cosB

(I)求角B的大小;
(II)若cos(B+C)+
3
sinA=2,且bc=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cosxsin(x+
π
6
)+2sinxcos(x+
π
6
)

(I)当x∈[0,
π
2
]时,求f(x)
的值域;
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
7
,△ABC面积为
3
3
2
,求b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A、B、C对的边分别为a、b、c且a2+b2=mc2(m为常数),若tanC(tanA+tanB)=2tanAtanB,则实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角分别为A,B,C.向量
m
=(1,cos
C
2
)与
n
=(
3
sin
C
2
+cos
C
2
3
2
)
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角为A,B,C,则“sinA>sinB”是“cosA<cosB”的(  )

查看答案和解析>>

同步练习册答案