精英家教网 > 高中数学 > 题目详情

已知函数 , .  
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)当时,函数上的最大值为,若存在,使得成立,求实数b的取值范围.

(Ⅰ)曲线在点处的切线方程
(Ⅱ)函数的递增区间为,递减区间为
(Ⅲ)的取值范围是.

解析试题分析:(Ⅰ)当时,           1分
                            .2分
所以曲线在点处的切线方程            3分
(Ⅱ)     4分
时,解,得,解,得
所以函数的递增区间为,递减区间为在            5分
时,令
ⅰ)当时,

x
 )




f’(x)
+
 
-
 
+
f(x)

 

 

        6分
函数的递增区间为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若时,,求的最小值;
(Ⅱ)设数列的通项,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)如果函数的单调递减区间为,求函数的解析式;
(Ⅱ)对一切的,恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数.当时,函数取得极值
(1)求函数的解析式;
(2)若函数有3个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数
(Ⅰ)当时,求函数的单调增区间;
(Ⅱ)函数是否存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,其中为常数.
(1)若是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求的取值范围.

查看答案和解析>>

同步练习册答案