精英家教网 > 高中数学 > 题目详情
6.三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=$\sqrt{13}$,SB=$\sqrt{29}$,
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC

分析 (1)利用SA⊥平面ABC,根据三垂线定理,可得SC⊥AC.
(2)求三棱锥S-ABC的体积,由题设条件得,棱锥的高是SA,底面是直角三角形,体积易求.

解答 (1)证明:∵∠SAB=∠SAC=90°
∴SA⊥AB,SA⊥AC,
又AB∩AC=A,
∴SA⊥平面ABC…(4分)
∴SA⊥BC…(5分)
又∠ACB=90°,∴AC⊥BC
∴BC⊥平面SAC…(7分)
∴SC⊥BC              …(8分)
(2)解:在△ABC中,∠ACB=90°,AC=2,BC=$\sqrt{13}$,∴AB=$\sqrt{17}$…(10分)
又在△SAB中,SA⊥AB,AB=$\sqrt{17}$,SB=$\sqrt{29}$,∴SA=2$\sqrt{3}$…(12分)
又SA⊥平面ABC,∴VS-ABC=$\frac{1}{3}×(\frac{1}{2}×2×\sqrt{13})×2\sqrt{3}$=$\frac{2\sqrt{39}}{3}$…(…(14分)

点评 本题以三棱锥为载体,考查线线垂直,考查几何体的体积,关键是正确运用线面垂直的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某学院调查了500名即将毕业的大学生对月工资的期望值,得到如题图所示的频率分布直方图,为了进一步了解他们对工作压力的相应预期,采用分层抽样的方法从这500人中抽出40人作问卷调查,则应从月工资期望值在(30,35](百元)中抽出的人数为(  )
A.5B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在($\sqrt{x}$-$\frac{1}{x}$)10的二项展开式中,含x2项的系数是(  )
A.-45B.-10C.45D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,若a4=1,a7=8,则公比q=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥P-ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2$\sqrt{6}$,则三棱锥P-ABC的内切球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}通项公式为an=Atn-1+Bn+1,其中A,B,t为常数,且t>1,n∈N*.等式(x2+x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}$anb2n的值;
(2)若A=1,B=0,且$\sum_{n=1}^{10}$(2an-2n)b2n=211-2,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则复数$\frac{1+i}{1-i}$=(  )
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.610°是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{a}{{{a^2}-1}}({{a^x}-{a^{-x}}})$,其中$\frac{π}{3}<θ+\frac{π}{3}<\frac{2π}{3}$
(1)写出f(x)的奇偶性与单调性(不要求证明);
(2)若函数y=f(x)的定义域为(-1,1),求满足不等式f(1-m)+f(1-m2)<0的实数m的取值集合;
(3)当x∈(-∞,2)时,f(x)-4的值恒为负,求a的取值范围.

查看答案和解析>>

同步练习册答案