【题目】如图,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四边形BDEF是正方形,点M在线段EF上, =λ .
(1)当λ= ,求证:BM∥平面ACE;
(2)如二面角A﹣BM﹣C的平面角的余弦值为﹣ ,求实数λ的值.
【答案】
(1)证明:∵ = ,∴M是EF的中点,
设AC∩BD=O,连结OE,则BM∥OE,
又∵BM平面ACE,OE平面ACE,
∴BM∥平面ACE.
(2)解:以O为原点,OB,OC分别为x轴,y轴,建立空间直角坐标系,
A(0,﹣ ,0),B(1,0,0),C(0, ,0),M(2λ﹣1,0,2),
=(1, ,0), =(2λ﹣2,0,2), =(﹣1, ,0),
设平面ABM的法向量 =(x,y,z),则 , =0,
∴ ,取x= ,得 =( ),
设平面BCM的法向量 =(a,b,c),则 ,
∴ ,取x= ,得 =( ),
∵二面角A﹣BM﹣C的平面角的余弦值为﹣ ,
∴|cos< >|= = ,
解得 ,或 (舍).
故实数λ的值为 .
【解析】(1)M是EF的中点,设AC∩BD=O,连结OE,则BM∥OE,由此能证明BM∥平面ACE.(2)以O为原点,OB,OC分别为x轴,y轴,建立空间直角坐标系,利用向量法能求出实数λ的值.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin2x+cos2( ﹣x)﹣ (x∈R).
(1)求函数f(x)在区间[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为 ,赔钱的概率是 ;乙股票赚钱的概率为 ,赔钱的概率为 .对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元. (Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sinxcos2x,则下列结论中错误的为( )
A.点(π,0)是函数y=f(x)图象的一个对称中心
B.直线x= 是函数y=f(x)图象的一条对称轴
C.π是函数y=f(x)的周期
D.函数y=f(x)的最大值为1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量X﹣N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点个数的估计值为( ) 附:若随机变量ξ﹣N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.
A.6038
B.6587
C.7028
D.7539
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:
(1)求申通公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题: ①记圆通公司的“快递员”日工资为X(单位:元),求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com