【题目】已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若,求证:.
科目:高中数学 来源: 题型:
【题目】设函数,其中a为常数:e≈2.71828为自然对数的底数.
(1)求曲线y=f(x)在x=0处的切线l在两坐标轴上的截距相等,求a的值;
(2)若x>0,不等式恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知和个实数若有穷数列由数列的项重新排列而成,且下列条件同时成立:① 个数两两不同;②当时,都成立,则称为的一个“友数列”.
(1)若写出的全部“友数列”;
(2)已知是通项公式为的数列的一个“友数列”,且求(用表示);
(3)设求所有使得通项公式为的数列不能成为任何数列的“友数列”的正实数的个数(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有、两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为(万元),表示污水流量,铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇和城镇的污水流量分别为,,、两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题:
(1)若在城镇和城镇单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com