精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx2-3x+1的图象上其零点至少有一个在原点右侧,则实数m的取值范围为
 
考点:一元二次方程的根的分布与系数的关系
专题:分类讨论,函数的性质及应用
分析:根据题意,二次函数的图象与x轴的交点至少有一个在原点的右侧,有两种情况,一是只有一个在右侧,二是两个都在右侧,分类讨论即可.
解答: 解:(1)当m=0时,f(x)=-3x+1,直线与x轴的交点为(
1
3
,0),即函数的零点为
1
3
,在原点右侧,符合题意;
(2)当m≠0时,∵f(0)=1,∴抛物线过点(0,1);
若m<0时,f(x)的开口向下,如图所示;

∴二次函数的两个零点必然是一个在原点右侧,一个在原点左侧,满足题意;
若m>0,f(x)的开口向上,如图所示,要使函数的零点在原点右侧,当且仅当△=9-4m≥0,且
3
2m
>0即可,如图所示,解得0<m≤
9
4


综上,m的取值范围是(-∞,
9
4
].
故答案为:(-∞,
9
4
].
点评:本题考查了一元二次方程根的分布与系数的关系,也考查了分类讨论思想的应用问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,则实数a的取值范围是(  )
A、(-3,+∞)
B、[-3,+∞)
C、(-4,+∞)
D、[-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项an=n(cos2
2
-sin2
2
),其前n项和为Sn,则S2010
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB于点D,若动点D的坐标满足方程x2+y2-4x=0,则m等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是由正数组成的等比数列,且a5•a6=9,则log3a1+log3a2+log3a3+…+log3a10的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

高为
2
的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,底面ABCD的中心为O1,外接球的球心为O,则异面直线SO1与AB所成的最小角的余弦值为(  )
A、
2
4
B、
2
3
C、
10
10
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果满足B=30°,AC=6,BC=k的△ABC恰有一个,那么k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知F1、F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,A、B分别是椭圆E的左、右顶点,且
AF2
=5
F2B

(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案