精英家教网 > 高中数学 > 题目详情
(2013•济宁二模)已知命题p:“存在正实数a,b,使得lg(a+b)=lga+lgb”;命题q:“异面直线是不同在任何一个平面内的两条直线”.则下列命题为真命题的是(  )
分析:根据对数的运算性质可知,当a=b=2时,lg(a+b)=lga+lgb成立,命题p为真,根据异面直线的定义可知,命题q为真,根据复合命题的真假关系可判断
解答:解:根据对数的运算性质可知,当a=b=2时,lg(a+b)=lga+lgb成立,故命题p为真,根据异面直线的定义可知,命题q为真,
根据复合命题的真假关系可知,p∧q为真
故选D
点评:本题主要考查了对数的运算性质及异面直线的定义的简单应用及复合命题的真假关系的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济宁二模)已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)将函数y=2cos2x的图象向右平移
π
2
个单位长度,再将所得图象的所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的函数解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)对于平面α和共面的直线m,n,下列命题是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)定义在(0,
π
2
)上的函数f(x),其导函数是f′(x),且恒有f(x)<f′(x)•tanx成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则
1
c
+
9
a
的最小值为(  )

查看答案和解析>>

同步练习册答案