精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)若存在 ,使函数成立,求实数的取值范围.

【答案】(1) (2)

【解析】试题分析:(I)首先求得函数定义域与,然后利用导数的几何意义求得的值,从而根据求得函数的单调递减区间;(II)首先将问题转化为,然后求得,并求得其单调区间,从而求得其最小值,进而求得的范围.

(I)由得函数的定义域为

由题意 解得

, 此时,

所以函数的单调递减区间是

(II)因为

由已知,若存在使函数成立,

则只需满足当时,即可.

,则上恒成立,

所以上单调递增,

,又∵,∴

,则上单调递减,在上单调递增,

所以 上的最小值为

综上所述, 的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:

(1)记集合A{1p,2}B{2,3},则“p3”是“ABB”的__________________

(2)a1”是“函数f(x)|2xa|在区间上为增函数”的________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中,点是线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值;若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料,五合板,生产每个书橱需要方木料,五合板,出售一张书桌可获利润元,出售一个书橱可获利润元.

1)如果只安排生产书桌,可获利润多少?

2)如果只安排生产书橱,可获利润多少?

3)怎样安排生产可使所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在海岛上有一座海拔的山峰,山顶设有一个观察站,有一艘轮船按一固定方向做匀速直线航行,上午时,测得此船在岛北偏东、俯角为处,到时,又测得该船在岛北偏西、俯角为的处.

1)求船的航行速度;

2)求船从行驶过程中与观察站的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时, 求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数). 

(Ⅰ)试判断函数的零点个数;

(Ⅱ)若函数上为增函数,求整数的最大值.

(可能要用的数据: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出由下列各组命题构成的“pq”“pq”以及“非p”形式的命题,并判断它们的真假:

(1)p3是素数,q3是偶数;

(2)px=-2是方程x2x20的解,qx1是方程x2x20的解.

查看答案和解析>>

同步练习册答案