精英家教网 > 高中数学 > 题目详情
8.函数f(x)=e|x|cosx的图象大致是(  )
A.B.C.D.

分析 根据函数的奇偶性,排除B;根据函数在(0,$\frac{π}{4}$)上,为增函数,在($\frac{π}{4}$,$\frac{5π}{4}$)上,为减函数,排除A;再根据在($\frac{5π}{4}$,$\frac{9π}{4}$)上,为增函数,f($\frac{9π}{4}$)>f($\frac{π}{4}$),排除C,可得结论.

解答 解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.
当x>0时,f(x)=ex•cosx,f′(x)=ex•cosx-ex•sinx=2x(cosx-sinx),
故函数在(0,$\frac{π}{4}$)上,f′(x)>0,f(x)为增函数;在($\frac{π}{4}$,$\frac{5π}{4}$)上,f′(x)<0,f(x)为减函数,故排除A.
在($\frac{5π}{4}$,$\frac{9π}{4}$)上,f′(x)>0,f(x)为增函数,且f($\frac{9π}{4}$)>f($\frac{π}{4}$),故排除C,只有D满足条件,
故选:D.

点评 本题主要考查函数的单调性和奇偶性的应用,函数的图象特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x2+ax-$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函数,则a的取值范围(  )
A.(-∞,3]B.(-∞,-3]C.[-3,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A1B1C1的各棱长为2,侧面BCC1B1⊥底面ABC,∠B${\;}_{{1}_{\;}}$BC=60°,P为A1C1的中点.
(1)求证:BC⊥AB1
(2)求二面角C1-B1C-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1(m为实数)的左焦点为(-4,0),则该椭圆的离心率为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的多面体中,已知菱形ABCD和直角梯形ACEF所在的平面互相垂直,其中∠FAC为直角,∠ABC=60°,EF∥AC,EF=$\frac{1}{2}$AB=1,FA=$\sqrt{3}$.
(1)求证:DE⊥平面BEF;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为$\frac{2}{5}$,乙车间3台机器每天发生故障的概率分别为$\frac{1}{5}$,$\frac{1}{5}$,$\frac{3}{5}$.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(Ⅰ)求乙车间每天机器发生故障的台数的分布列;
(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知斜率为2的直线l过点P(1,3),将直线l沿x轴向右平移m个单位得到直线l′,若点A(2,1)在直线l′上,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解“网络游戏对当代青少年的影响”做了一次调查,共调查了30名男同学、20名女同学.调查的男生中有10人不喜欢玩电脑游戏,其余男生喜欢玩电脑游戏;而调查的女生中有5人喜欢玩电脑游戏,其余女生不喜欢电脑游戏.
(1)根据以上数据填写如下2×2的列联表:
性别
对游戏态度
男生女生合计
喜欢玩电脑游戏20525
不喜欢玩电脑游戏101525
合计302050
(2)根据以上数据,能否在犯错误的概率不超过0.005的前提下认为“喜欢玩电脑游戏与性别关系”?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}⊥\overrightarrow{b}$,则m=2.

查看答案和解析>>

同步练习册答案