精英家教网 > 高中数学 > 题目详情

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

2)记(1)中的轨迹为,过点的直线所截得的线段的长为 8,求直线的方程.

【答案】12,或

【解析】 试题分析】(1)运用两点间距离公式建立方程进行化简;(2)借助直线与圆的位置关系,运用圆心距、半径、弦长之间的关系建立方程待定直线的斜率,再用直线的点斜式方程分析求解:

(1)由题意,得

化简,得

的轨迹方程是

轨迹是以为圆心,以为半径的圆

(2)当直线的斜率不存在时,

此时所截得的线段的长为

符合题意.

当直线的斜率存在时,设的方程为

,即

圆心到的距离

由题意,得

解得

∴直线的方程为

.

综上,直线的方程为

,或.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等式:sin25°+cos235°+sin 5°cos 35°=

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此归纳出对任意角度θ都成立的一个等式,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,海上有两个相距保持观望所成的视角为现从船派下一只小艇沿方向驶至进行作业,且

(1)分别表示并求出的取值范围;

(2)0晚上小艇在发出一道强烈的光线照射至光线距离为最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解大学生观看浙江卫视综艺节目“奔跑吧兄弟”是否与性别有关,一所大学心理学教师从该校学生中随机抽取了50人进行问卷调查,得到了如下的列联表:

喜欢看“奔跑吧兄弟”

不喜欢看“奔跑吧兄弟”

合计

女生

5

男生

10

合计

50

若该教师采用分层抽样的方法从50份问卷调查中继续抽查了10份进行重点分析,知道其中喜欢看“奔跑吧兄弟”的有6人.

(1)请将上面的列联表补充完整;

(2)是否有的把握认为喜欢看“奔跑吧兄弟”节目与性别有关?说明你的理由;

(3)已知喜欢看“奔跑吧兄弟”的10位男生中,还喜欢看新闻,还喜欢看动画片,还喜欢看韩剧,现再从喜欢看新闻、动画片和韩剧的男生中各选出1名进行其他方面的调查,求不全被选中的概率.

下面的临界值表供参考:

P(χ2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在坐标原点,焦点在轴上,焦点到短轴端点的距离为2,离心率为.

(Ⅰ)求该椭圆的方程;

(Ⅱ)若直线与椭圆交于 两点且,是否存在以原点为圆心的定圆与直线相切?若存在求出定圆的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=的定义域为(-1,1),满足f(-x)=-fx),且

(1)求函数fx)的解析式;

(2)证明fx)在(-1,1)上是增函数;

(3)解不等式 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合

1)当m=4时,求

2)若,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案