精英家教网 > 高中数学 > 题目详情
a
=(1,1),
b
=(-1,0),则
ta
+
b
(t∈R)模的最小值是
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:由题意求得
ta
+
b
的坐标,可得
ta
+
b
(t∈R)模为
2(t-
1
2
)
2
+
1
2
,再利用二次函数的性质求得它的最小值.
解答: 解:由题意可得
ta
+
b
=(t-1,t),则
ta
+
b
(t∈R)模为
(t-1)2+t2
=
2t2-2t+1
=
2(t-
1
2
)
2
+
1
2

故当t=
1
2
时,
ta
+
b
(t∈R)模取得最小值为
1
2
=
2
2

故答案为:
2
2
点评:本题主要考查两个向量坐标形式的运算,求向量的模的方法,二次函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x-
1
x
的图象为双曲线,在此双曲线的两支上分别取点P、Q,则线段PQ长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a+x2+2x,(x<0)
f(x-1),(x≥0)
,且函数y=f(x)+x恰有3个不同的零点,则实数a的取值范围是(  )
A、(-∞,1]
B、(0,1]
C、(-∞,0]
D、(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,动点P到两点F1(-1,0),F2(1,0)的距离之和为4,设P点轨迹为C.
(Ⅰ)求C的方程;
(Ⅱ)曲线C上不同的两点A(x1,y1)、B(x2,y2)满足:
AF2
F2B
,x1+x2=
1
2
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的单调递增区间:y=
1
2
cosx+
1
2
|cosx|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列Pn(an,bn)在直线l:y=2x+1上,P1为直线l与y轴的交点,等差数列{an}的公差为1,(n∈N+
(1)求数列{an}、{bn}的通项公式;
(2)设Cn=
1
n|P1Pn|
(n≥2),求C1+C2+…+Cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log
1
2
x,x∈(0,
3
2
]
2x,x∈(
3
2
,+∞)
,解不等式f(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=g(x)-t,若对?t∈R,f(x)恒有两个零点,则函数g(x)可为(  )
A、g(x)=2x+2-x
B、g(x)=2x-2-x
C、g(x)=log2x+
1
log2x
D、g(x)=log2x-
1
log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为数列{an}的前n项的和,满足Sn=
t-tan
1-t
(n∈N*),其中t为常数,且t≠0,t≠1.
(1)求通项an
(2)若t=-
3
2
,设bn=(n+2)•an•ln|an|问数列{bn}的最大项是它的第几项?

查看答案和解析>>

同步练习册答案