精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值;
(2)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证

(1);(2);(3))设,即,对恒成立,
,对恒成立即恒成立,解得

解析试题分析:(1) 

       …………………………2分
(2)k=
对任意的,即对任意的恒成立……3分
等价于对任意的恒成立。…………………………4分
令g(x)=,h(x)=
    ………………………………5分
,当且仅当时“=”成立,…………6分
h(x)=在(0,1)上为增函数,h(x)max<2    ……………………7分
所以    …………………………………………………………………8分
(3)设……9分
,对恒成立   ……………………10分
,对恒成立
恒成立    ……………………11分

解得        …………………12分
考点:导数的几何意义;利用倒数研究曲线的切线方程;
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及导数的几何意义,同时考查了恒成立问题和转化的数学思想,是一道综合题,有一定的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(满分12分)设函数
(Ⅰ)求函数的单调递增区间;
(II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

不等式选讲已知函数
⑴当时,求函数的最小值;
⑵当函数的定义域为时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(I)求的最小值;
(II)若对所有都有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数的导函数为,且
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
为奇函数,a为常数。
(1)求的值;并证明在区间上为增函数;
(2)若对于区间上的每一个的值,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求的表达式,并判断的奇偶性;
(2)试证明:函数的图象上任意两点的连线的斜率大于0;
(3)对于,当时,恒有求m的取值范围。

查看答案和解析>>

同步练习册答案