精英家教网 > 高中数学 > 题目详情
5.设α,β是方程x2-2mx+2-m=0(x∈R)的两个实根,则α22的最小值为(  )
A.2B.0C.16D.-$\frac{17}{4}$

分析 根据二次方程根与系数的关系,可得α+β=2m,αβ=2-m,且△=4m2+4m-8≥0,即m≤-2,或m≥1,构造函数y=α22=(α+β)2-2αβ=4m2+2m-4,结合二次函数的图象和性质,可得答案.

解答 解:∵α,β是方程x2-2mx+2-m=0,
故α+β=2m,αβ=2-m,且△=4m2+4m-8≥0,即m≤-2,或m≥1,
则α22=(α+β)2-2αβ=4m2+2m-4,
由y=4m2+2m-4的图象是开口朝上,且以m=$-\frac{1}{4}$为对称轴的抛物线,
故当m=1时,取最小值2,
故选:A.

点评 本题考查的知识点是二次函数的性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.与圆C:(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程是(x-5)2+(y+1)2=1或或(x-3)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,已知A、B两点的距离为100海里,B在A的北偏东30°处,甲船自A以50海里/小时的速度向B航行,同时乙船自B以30海里/小时的速度沿方位角150°方向航行.问航行几小时两船之间的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.执行如图所示的程序框图,若输入自然数n的值为6,则输出s的值是22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆的方程是(x-2)2+y2=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某工人生产合格零售的产量逐月增长,前5个月的产量如表所示:
月份x12345
合格零件y(件)50607080100
(I)若从这5组数据中抽出两组,求抽出的2组数据恰好是相邻的两个月数据的概率;
(Ⅱ)请根据所给5组数据,求出 y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并根据线性回归方程预测该工人第6个月生产的合格零件的件数.
(附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=(a-1)x和y=log(3-a)x都是(0,+∞)上的增函数,则a的取值范围是1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设{an}满足:a1=2,an+1=Sn+n,n∈N*,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l经过直线3x+y-1=0与直线x-5y-11=0的交点,且与直线x+4y=0垂直.
(1)求直线l的方程;
(2)求直线l被圆:x2+(y-11)2=25所截得的弦长|AB|.

查看答案和解析>>

同步练习册答案