【题目】某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求这部分学生成绩的样本平均数 和样本方差s2(同一组数据用该组的中点值作为代表)
(2)由频率分布直方图可以认为,该校高二学生在这次测验中的数学成绩X服从正态分布 . ①利用正态分布,求P(X≥129);
②若该校高二共有1000名学生,试利用①的结果估计这次测验中,数学成绩在129分以上(含129分)的学生人数.(结果用整数表示)
附:① ≈14.5②若X~N(μ,σ2),则P(μ﹣2σ<X<μ+2σ)=0.9544.
【答案】
(1)解:由频率分布直方图可知: +130×0.005)×10=100分
s2=(﹣30)2×0.005×10+(﹣20)2×0.010×10+(﹣10)2×0.020×10+0×0.030×10+102×0.020×10+202×0.010×10+302×0.005×10=210
(2)解:①由(1)知:X~N(100,210),
从而P(X≥129)=P(X≥100+2×14.5)= = =0.0228
②由①知:这次测验,该校高二1000名学生中,成绩在12(9分)以上的人数约为1000×0.0228=22.8≈23
【解析】(1)由同一组数据用该组的中点值作为代表,利用平均数公式和方差公式能求出抽取的样本平均数x和样本方差s2 . (2)①由(1)知:X~N(100,210),从而P(X≥129)=P(X≥100+2×14.5),可得结论;②由①知:这次测验,该校高二1000名学生中,成绩在12(9分)以上的人数约为1000×0.0228.
科目:高中数学 来源: 题型:
【题目】长方体ABCD-A1B1C1D1中,AB=BC=2,D1D=3,点M是B1C1的中点,点N是AB的中点.建立如图所示的空间直角坐标系.
(1)写出点D、N、M的坐标;
(2)求线段MD、MN的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足,a2=3,a5=81.
(1)求数列{an}的通项公式;
(2)设bn=log3an , 求{bn}的前n项和为Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足Sn= n2+ n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2 , b3﹣3,b2+2成等差数列. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=anbn(n∈N*),求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:
支持 | 不支持 | 合计 | |
中老年组 | 50 | ||
中青年组 | 50 | ||
合 计 | 100 |
(1)根据以上信息完成2×2列联表;
(2)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
附: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0),过其焦点F的直线l交抛物线C于点A、B,|AF|=3|BF|,则|AB|=( )
A.p
B.
C.2p
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 、 满足| |=1,| |=2, 与 的夹角为60°.
(1)若(k ﹣ )⊥( + ),求k的值;
(2)若|k ﹣ |<2,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正项数列{an}的前n项和为Sn , 满足an=2 ﹣1.若对任意的正整数p、q(p≠q),不等式SP+Sq>kSp+q恒成立,则实数k的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com