精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4
(2)猜想{an}的通项公式,并用数学归纳法证明.

【答案】
(1)解:令n=1,﹣2a2+3=0,a2=

令n=2,﹣ a3 +4=0,a3=

令n=3,﹣ a4 +4=0,a4=


(2)解:猜想an= (n∈N*).

证明:当n=1时,a1=1= ,所以an= 成立,

假设当n=k时,an= 成立,即ak=

则(ak﹣3)ak+1﹣ak+4=0,即( ﹣3)ak+1 +4=0,

所以 ak+1= ,即ak+1= =

所以当n=k+1时,结论an= 成立.

综上,对任意的n∈N*,an= 成立


【解析】(1)由数列{an}的递推公式依次求出a2 , a3 , a4;(2)根据a2 , a3 , a4值的结构特点猜想{an}的通项公式,再用数学归纳法①验证n=1成立,②假设n=k时命题成立,证明当n=k+1时命题也成立
【考点精析】关于本题考查的数列的定义和表示和数学归纳法的定义,需要了解数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an数学归纳法是证明关于正整数n的命题的一种方法才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1=2an+1(n∈N*),Sn为其前n项和,则S5的值为(
A.57
B.61
C.62
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函数y=f(x)图象的一个对称中心到它对称轴的最近距离为
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=2px(p>0)与双曲线C2 =1(a>0.b>0)有公共焦点F,且在第一象限的交点为P(3,2 ).
(1)求抛物线C1 , 双曲线C2的方程;
(2)过点F且互相垂直的两动直线被抛物线C1截得的弦分别为AB,CD,弦AB、CD的中点分别为G、H,探究直线GH是否过定点,若GH过定点,求出定点坐标;若直线GH不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程 的两个不等实根,函数的定义域为.

1)当时,求函数的最值;

(2)试判断函数在区间的单调性;

(3)设试证明:对于.

(参考公式: 当且仅当时等号成立)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:

时间

第4天

第32天

第60天

第90天

价格(千元)

23

30

22

7

(Ⅰ)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x天,x∈N*);
(Ⅱ)销售量g(x)与时间x的函数关系式为 ,则该产品投放市场第几天的销售额最高?最高为多少千元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的展开式各项系数和为M, 的展开式各项系数和为N,(x+1)n的展开式各项的系数和为P,且M+N﹣P=2016,试求 的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.

查看答案和解析>>

同步练习册答案