【题目】如图,圆台O1O2的轴截面为等腰梯形A1A2B2B1,A1A2B1B2,A1A2=2B1B2,A1B1=2,圆台O1O2的侧面积为6π.若点C,D分别为圆O1,O2上的动点且点C,D在平面A1A2B2B1的同侧.
(1)求证:A1C⊥A2C;
(2)若∠B1B2C=60°,则当三棱锥C﹣A1DA2的体积取最大值时,求A1D与平面CA1A2所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)设圆O1,O2的半径分别为r,2r,由题意可得r=1,则,,,连接O1O2,O1C,O2C,可得O1O2⊥O1C,由此可证结论;
(2)由题意可求得点D为弧A1A2的中点时,V有最大值,连接DO2,以点O2为坐标原点,以O2D,O2A2,O2O1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,利用空间向量即可求得线面角.
(1)证:设圆O1,O2的半径分别为r,2r,
∵圆台的侧面积为6π,
∴,解得r=1,
∴在等腰梯形A1A2B2B1中,,
连接O1O2,O1C,O2C,在圆台O1O2中,O1O2⊥平面B1CB2,O1C在平面B1CB2内,
∴O1O2⊥O1C,
又O1C=1,故在△O1CO2中,CO2=2,
在△CA1A2中,,故∠A1CA2=90°,即A1C⊥A2C;
(2)解:由题意可知,三棱锥C﹣A1DA2的体积为,
又在Rt△A1DA2中,,当且仅当时取等号,
即点D为弧A1A2的中点时,V有最大值,
连接DO2,∵O1O2⊥平面A1DA2,DO2⊥O2A2,
∴以点O2为坐标原点,以O2D,O2A2,O2O1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,
则A1(0,﹣2,0),A2(0,2,0),D(2,0,0),由∠B1B2C=60°,可知,
设平面CA1A2的一个法向量为,则,可取,
∴,
∴A1D与平面CA1A2所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”,讲的是西施浣纱的故事;“落雁”,指的就是昭君出塞的故事;“闭月”,是述说貂蝉拜月的故事;“羞花”,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年,中央和国务院办公厅印发《关于引导农村土地经营权有序流转发展农业适度规模经营的意见》,要求大力发展土地流转和适度规模经营.某种粮大户2015年开始承包了一地区的大规模水田种植水稻,购买了一种水稻收割机若干台,这种水稻收割机随着使用年限的增加,每年的养护费也相应增加,这批水稻收割机自购买使用之日起,5年以来平均每台水稻收割机的养护费用数据统计如下:
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
养护费用 (万元) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)从这5年中随机抽取2年,求平均每台水稻收割机每年的养护费用至少有1年多于2万元的概率;
(2)求关于的线性回归方程;
(3)若该水稻收割机的购买价格是每台16万元,由(2)中的回归方程,从每台水稻收割机的年平均费用角度,你认为一台该水稻收割机是使用满5年就淘汰,还是继续使用到满8年再淘汰?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆过定点,且在轴上截得的弦长,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点作直线交曲线于两点,问在曲线上是否存在一点,使得点在以为直径的圆上?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数,为直线的倾斜角).以原点为极点,轴的非负半轴为极轴建立极坐标系,并在两个坐标系下取相同的长度单位.
(1)当时,求直线的极坐标方程;
(2)若曲线和直线交于,两点,且,求直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,,平面平面,为的中点,,,.
(1)求证:平面平面;
(2)若异面直线与所成角为,求的长;
(3)在(2)的条件下,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com