精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sin cos +sin2 (ω>0,0<φ< ).其图象的两个相邻对称中心的距离为 ,且过点( ,1).
(1)函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c.已知 = .且f(A)= ,求角C的大小.

【答案】
(1)解:由题意得,f(x)= sin(ωx+φ)+ [1﹣cos(ωx+φ)]

=

∵两个相邻对称中心的距离为 ,则T=π,

,且ω>0,解得ω=2,

又f(x)过点 ,∴

,即cosφ= ,由0<φ< 得,φ=

∴f(x)=


(2)解:在△ABC中,由余弦定理得b2=a2+c2﹣2accosB,

∴b2﹣a2﹣c2=﹣2accosB,

同理可得,c2﹣a2﹣b2=﹣2abcosC,

代入 得, =

由正弦定理得,

由0<C<π得sinC≠0,∴sinBcosC=2sinAcosB﹣sinCcosB,

∴2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,

由0<A<π得sinA≠0,化简得cosB=

∵0<B<π,∴B=

,则

,∴ ,则

解得

所以当 时, ;当 时,


【解析】(1)根据二倍角公式、两角差的正弦公式化简解析式,结合条件求出周期,由周期公式求出ω,将点 代入解析式化简后,由内角的范围和特殊角的三角函数值求出φ,即可求出f(x);(2)由正弦定理和余弦定理化简已知的式子,利用两角和的正弦公式和内角的范围求出B,由解析式化简 ,根据角A的范围和特殊角的三角函数值求出A,再由内角和定理求出C.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S ABCD中,平面SAD⊥平面ABCD.四边形ABCD为正方形,且点PAD的中点,点QSB的中点.

(1)求证:CD⊥平面SAD

(2)求证:PQ∥平面SCD

(3)若SASD,点MBC的中点,在棱SC上是否存在点N,使得平面DMN⊥平面ABCD?若存在,请说明其位置,并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,则sinα+cosα的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,且△AB1B2是面积为1的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)点M为该椭圆上任意一点,求|MA|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用水,实行“阶梯式”水价,将该市每户居民的月用水量划分为三档:月用水量不超过4吨的部分按2元/吨收费,超过4吨但不超过8吨的部分按4元/吨收费,超过8吨的部分按8元/吨收费.

(1)求居民月用水量费用(单位:元)关于月用电量(单位:吨)的函数解析式;

(2)为了了解居民的用水情况,通过抽样,获得今年3月份100户居民每户的用水量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年3月份用水费用不超过16元的占66%,求的值;

(3)在满足条件(2)的条件下,若以这100户居民用水量的频率代替该月全市居民用户用水量的概率.且同组中的数据用该组区间的中点值代替.记为该市居民用户3月份的用水费用,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)若直线与平面所成的角为30°,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科)在平面直角坐标系中, 是椭圆上的一个动点,点,则的最大值为( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1, ), =(sinx,cosx),设函数f(x)=
(1)求函数f(x)的最小正周期和最大值;
(2)设锐角△ABC的三个内角A,B,C的对边分别为a,b,c,若c= ,cosB= ,且f(C)= ,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:

x

3

4

5

6

y

2.5

3

4

4.5


(1)求y关于x的线性回归方程;(已知
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤.

查看答案和解析>>

同步练习册答案