科目:高中数学 来源: 题型:
已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使池f(m)=- a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由;
(3)若 对,方程有2个不等实根,.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年方城一高高三年级10月月考数学试卷(理科) 题型:解答题
(本题满分14分)已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)若 对,方程有2个不等实根,;
(3)在(1)的条件下,是否存在m∈R,使f(m)=- a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年方城一高高三年级10月月考数学试卷(理科) 题型:解答题
(本题满分14分)已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)若 对,方程有2个不等实根,;
(3)在(1)的条件下,是否存在m∈R,使f(m)=- a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知二次函数f(x)=ax2+bx+c。
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有两个交点;
(2)在(1)的条件下,是否存在mR,使得当f(m)=-a成立时,f(m+3)为正数,证明你的结论;若不存在,说明理由;
(3)若对x1,x2R,且x1<x2,f(x1)≠f(x2),方程f(x)=[f(x1)+f(x2)]有两个不等的实根,证明必有一个实根属于(x1,x2);
查看答案和解析>>
科目:高中数学 来源: 题型:
已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,试证明f(x)必有两个零点;
(2)若对x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=[f(x1)+f(x2)]有两个不等实根,证明必有一实根属于(x1,x2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com