(本小题满10分) 设直线的方程为.
(1) 若在两坐标轴上的截距相等,求的方程;
(2) 若不经过第二象限,求实数的取值范围.
(1) .(2) a≤-1.
【解析】
试题分析:
(Ⅰ)根据直线方程求出它在两坐标轴上的截距,根据它在两坐标轴上的截距相等,求出a的值,即得直线l方程.
(Ⅱ)把直线方程化为斜截式为 y=-(a+1)x-a-2,若l不经过第二象限,则a=-1 或 -(a+1)》0,-a-2≤0,由此求得实数a的取值范围。
解:(1)当直线过原点时,该直线在轴和轴上的截距都为零,截距相等,
∴,方程即. ﹍﹍﹍﹍﹍﹍﹍2分
若,由于截距存在,∴ , ﹍﹍﹍﹍﹍﹍﹍3分
即,∴, 方程即. ﹍﹍﹍﹍﹍﹍﹍﹍5分
(2)法一:将的方程化为, ﹍﹍﹍﹍﹍﹍﹍﹍7分
∴欲使不经过第二象限,当且仅当 ﹍﹍﹍﹍﹍﹍﹍9分
∴a≤-1. 所以的取值范围是a≤-1. ﹍﹍﹍﹍﹍﹍10分
法二:将的方程化为(x+y+2)+a(x-1)=0(a∈R), ﹍﹍﹍﹍﹍﹍﹍7分
它表示过l1:x+y+2=0与l2:x-1=0的交点(1,-3)的直线系(不包括x=1).由图象可知l的斜率-(a+1)≥0时,l不经过第二象限,∴a≤-1. ﹍﹍﹍﹍﹍﹍﹍﹍10分
考点:本题主要考查直线方程的一般式,直线在坐标轴上的截距的定义,直线在坐标系中的位置与它的斜率、截距的关系,属于基础题
点评:解决该试题的易错点是对于直线在坐标轴上截距相等的理解中,缺少过原点的情况的分析。
科目:高中数学 来源:2011年福建省福州市高二上学期期末考试数学文卷 题型:解答题
(本小题满10分)
设函数,其中.
(1)若,求在的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源:2010年福建省高一上学期期中考试数学卷 题型:解答题
(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。对于函数,若存在x0∈R,使成立,则称x0为的不动点。已知函数(a≠0)。
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;
(3)(特保班做) 在(2)的条件下,若图象上A、B两点的横坐标是函数的不动点,且A、B两点关于点对称,求的的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满10分)注意:第(3)小题平行班学生不必做,特保班学生必须做。
对于函数,若存在x0∈R,使成立,则称x0为的不动点。
已知函数(a≠0)。
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;
(3)(特保班做) 在(2)的条件下,若图象上A、B两点的横坐标是函数的不动点,且A、B两点关于点对称,求的的最小值。
查看答案和解析>>
科目:高中数学 来源:2010年河南省实验中学高二下学期期中考试数学(理) 题型:解答题
(本小题满10分)一物体沿直线以速度(的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻秒至时刻秒间运动的路程?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com