精英家教网 > 高中数学 > 题目详情

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中的值;

(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);

(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的”的规定?

【答案】(1) .(2) (3) 不能认为符合规定

【解析】

(1)由频率分布直方图和茎叶图的性质列出方程组,能求出abc

(2)利用频率分布直方图能估计这种产品质量指标值的平均数和方差.

(3)质量指标值不低于1.50的产品占比为0.30+0.40+0.15=0.85<0.9,由此能求出结果.

解:解:(1)由频率分布直方图和茎叶图得:

解得a=0.5,b=1,c=1.5.

(2)估计这种产品质量指标值的平均数为:

1.35×0.5×0.1+1.45×1×0.1+1.55×3×0.1+1.65×4×0.1+1.75×1.5×0.1=1.6,

估计这种产品质量指标值的方差为:

S2=(1.35﹣1.6)2×0.05+(1.45﹣1.6)2×0.1+(1.55﹣1.6)2×0.4+(1.75﹣1.6)2×0.15=0.0105.

(3)∵质量指标值不低于1.50的产品占比为:

0.30+0.40+0.15=0.85<0.9,

∴不能认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的90%”的规定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线的极坐标方程为(常数),曲线的参数方程为为参数).

1)求曲线的直角坐标方程和的普通方程;

2)若曲线有两个不同的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点.

1)若线段的中点为,求直线的方程;

2)若的斜率为,且过椭圆的左焦点的垂直平分线与轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线过焦点且与抛物线交于两点,当直线的倾斜角为30°时,

1)求抛物线方程.

2)在平面直角坐标系中,是否存在定点,当直线旋转时始终都满足平分.若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线为,求实教ab的值.

2)若,且对一切正实数x值成立,求实数b的取值范围.

3)若,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄元一年定期,若年利率为保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为  

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,

,圆与椭圆在第一象限交于点,在第二象限交于点.

(1)求椭圆的方程;

(2)求的最小值,并求出此时圆的方程;

(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:

为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面的问题中,并解决该问题.

已知的内角,,的对边分别为,,______________,,,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自726日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在730800830开始放映,小明和同学大约在740830之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案