【题目】已知椭圆的右焦点为,过的直线与交于,两点,点的坐标为.当轴时,的面积为.
(1)求椭圆的标准方程;
(2)设直线、的斜率分别为、,证明:.
【答案】(1);(2)见解析
【解析】
(1)由已知条件得b2=a2﹣1,利用通径公式得出|AB|的表达式,再由△ABM的面积得出有关a的方程,求出a的值,可得出椭圆C的标准方程;
(2)对直线l与x轴垂直、与y轴垂直以及与斜率存在且不为零三种情况讨论.在前两种情况下可直接进行验证;在第三种情况下,设直线l的方程为y=k(x﹣1)(k≠0),将直线l的方程与椭圆方程联立,列出韦达定理,利用斜率公式并代入韦达定理,通过化简计算得出结论成立.
(1)依题意得,即,
所以当时,解得,当轴时,,
因为,所以,解得,
所以椭圆的标准方程为.
(2)当与轴重合时,,满足条件;当与轴垂直时,满足条件,
当与轴不重合且不垂直时,设为,,,
把代入,得,
则,,
因为 ,
而,
所以.
科目:高中数学 来源: 题型:
【题目】已知集合,,集合,且集合满足,.
(1)求实数的值;
(2)对集合,其中,定义由中的元素构成两个相应的集合:,,其中是有序数对,集合和中的元素个数分别为和,若对任意的,总有,则称集合具有性质.
①请检验集合与是否具有性质,并对其中具有性质的集合,写出相应的集合和;
②试判断和的大小关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为常数
(1)当在处取得极值时,若关于x的方程 在上恰有两个不相等的实数根,求实数b的取值范围.
(2)若对任意的,总存在,使不等式 成立,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)用“五点法”作出在长度为一个周期的闭区间上的简图;
(2)写出的对称中心与单调递增区间,并求振幅、周期、频率、相位及初相;
(3)求的最大值以及取得最大值时x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.
(1)判断下列数列是否为“弱等差数列”,并说明理由.
①1,3,5,7,9,11;
②2,,,,.
(2)证明:若,则数列为“弱等差数列”.
(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数的图象沿着轴向左平移个单位,纵坐标伸长到原来的倍(横坐标不变)后得到函数的图象,对于函数有以下四个判断:
(1)该函数的解析式为;
(2)该函数图象关于点对称;
(3)该函数在上是增函数;
(4)若函数在上的最小值为,则.
其中正确的判断有( )
A.个B.个C.个D.个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )
A.y2=9xB.y2=6x
C.y2=3xD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com