精英家教网 > 高中数学 > 题目详情

【题目】已知 为两条不同的直线, 为两个不同的平面,对于下列四个命题:

其中正确命题的个数有(

A. B. C. D.

【答案】A

【解析】 ,则可能相交 ,则可能在平面 ,则可能异面 ,则可能异面,错,故所有命题均不正确故选

【方法点晴】本题主要考查线面平行的判定与性质、面面平行判定与性质,属于中档题. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }是等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 数列{bn}的前n项和为Tn , 若不等式(﹣1)nλ<Tn+ 对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,,第五组,下图是按上述分组方法得到的频率分布直方图

(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;

(2)请估计学校1800名学生中,成绩属于第四组的人数;

(3)请根据频率分布直方图,求样本数据的众数和中位数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=a(a>0),其前n项和为Sn , 设bn=an+an+1(n∈N*).
(1)若a2=a+1,a3=2a2 , 且数列{bn}是公差为3的等差数列,求S2n
(2)设数列{bn}的前n项和为Tn , 满足Tn=n2
①求数列{an}的通项公式;
②若对n∈N*,且n≥2,不等式(an﹣1)(an+1-1)≥2(1﹣n)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,点 分别为线段 的中点.

)证明平面

)证明平面平面

)在线段上找一点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
(1)确定∠C的大小;
(2)若c= ,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中)的周期为,且图象上一个最低点为

(1)求的解析式;

(2)当时,求的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是

查看答案和解析>>

同步练习册答案