精英家教网 > 高中数学 > 题目详情

如图,设是单位圆上一点,一个动点从点出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.秒时,动点到达点秒时动点到达点.设,其纵坐标满足.

(1)求点的坐标,并求
(2)若,求的取值范围.

(1) 点B的坐标是;(2)

解析试题分析:(1)这是一个三角函数问题,要求点坐标,我们只要求出,首先求出从旋转的角度是多少即可,在是初始值,就是,旋转速度是,故有;(2)在(1)的解题过程中知秒时点的坐标为,因此我们可把表示为的函数,转化为求三角函数的取值范围问题.
试题解析:(1)当时,
所以
所以,点B的坐标是(0,1)                     2分
秒时,                      4分
.                       6分
(2)由,得

,          8分

            10分
     12分
所以,的取值范围是                     14分
考点:(1)单位圆的点的坐标;(2)现是的数量积与三角函数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)若,求
(2)若垂直,求当为何值时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,若过点且斜率为的直线与抛物线相交于两点,且
(1)求抛物线的方程;
(2)设直线为抛物线的切线,且,上一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,(1)若垂直,求的值;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=,b=(sinx,cos2x),x∈R,设函数f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量的夹角为
(1)求的值;
(2)求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为

(1)求椭圆C的方程;
(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N 的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量 ,为锐角.
(1)若,求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若的夹角为45°,求
(2)若,求的夹角

查看答案和解析>>

同步练习册答案