精英家教网 > 高中数学 > 题目详情
17.为了得到函数y=sin(2x-$\frac{π}{3}$)的图象,只需将函数y=sin2x的图象上所有的点(  )
A.向左平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{3}$个单位
C.向右平移$\frac{π}{6}$个单位D.向右平移$\frac{π}{3}$个单位

分析 由函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:∵y=sin(2x-$\frac{π}{3}$)=sin[2(x-$\frac{π}{6}$)],
∴将函数y=sin2x的图象上所有的点向右平移$\frac{π}{6}$个单位,即可得到函数y=sin(2x-$\frac{π}{3}$)的图象.
故选:C.

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知点O,A,B,F分别为椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若$\overrightarrow{AB}=λ\overrightarrow{OP}$,则实数λ的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosx,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(sinx,cos2x),x∈R,设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(I)求f(x)的最小正周期:
(Ⅱ)若x∈(0,$\frac{π}{2}$),求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+2$\overrightarrow{b}$-2$\overrightarrow{c}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow{b}$+3$\overrightarrow{c}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$,则直线AD与BC(  )
A.平行B.相交C.重合D.平行或重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\root{3}{x}-\frac{1}{x^2}$ 的零点是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-2|x|
(1)判断并证明函数f(x)的奇偶性;
(2)判断函数f(x)在(1,+∞)上的单调性,并解不等式$f(|a|+\frac{3}{2})>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个焦点为F1、F2,点A在双曲线第一象限的图象上,若△AF1F2的面积为1,且tan∠AF1F2=$\frac{1}{2}$,tan∠AF2F1=-2,则双曲线方程为$\frac{{12{x^2}}}{5}-3{y^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.直线的倾斜角的取值范围是[0°,180°]
B.若直线的倾斜角为90°,则这条直线与y轴平行
C.任意一条直线都有倾斜角和斜率
D.若直线l的倾斜角为锐角,则它的斜率大于0;若直线l的倾斜角为钝角,则它的斜率小于0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知商场销售某种茶杯购买人数n与茶杯标价x元满足关系式:n=-x+b(b为常数).把购买人数为零时的最低标价称为无效价格,已知无效价格为每个30元.现在这种茶杯的成本价是10/个,商场以高于成本价的相同价格(标价)出售. 问:
(1)求b的值;
(2)商场要获取最大利润,茶杯的标价应定为每件多少元?
(3)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么茶杯的标价为每个多少元?

查看答案和解析>>

同步练习册答案