精英家教网 > 高中数学 > 题目详情

△ABC中,AB=数学公式,AC=1,∠B=30°,则∠C等于


  1. A.
    60°
  2. B.
    90°
  3. C.
    120°
  4. D.
    60°或120°
D
分析:由B的度数求出sinB的值,再由AB,AC的值,利用正弦定理求出sinC的值,根据C的范围,利用特殊角的三角函数值即可求出角C的度数.
解答:由AB=,AC=1,∠B=30°,
根据正弦定理=得:sinC===
又AB>AC,得到∠C>∠B,即30°<∠C<180°,
则∠C=60°或120°.
故选D
点评:此题属于解三角形的题型,涉及的知识有正弦定理,三角形边角的关系,以及特殊角的三角函数值,根据正弦定理求出sinC的值是解本题的关键,同时注意判断得出角C的具体范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,AB=4,AC=8,∠BAC=60°,延长CB到D,使BA=BD,当E点在线段AB上移动时,若
AE
AC
AD
,当λ取最大值时,λ-μ的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(中数量积)在△ABC中,AB=
3
,BC=2,∠A=
π
2
,如果不等式|
BA
-t
BC
|≥|
AC
|
恒成立,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=7,BC=5,CA=6,则
AB
BC
=(  )
A、-19B、19
C、-38D、38

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=4,AC=4
2
,∠BAC=45°,以AC的中线BD为折痕,将△ABD沿BD折起,构成二面角A-BD-C.在面BCD内作CE⊥CD,且CE=
2

(Ⅰ)求证:CE∥平面ABD;
(Ⅱ)如果二面角A-BD-C的大小为90,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,
AB
=
c
BC
=
a
CA
=
b
,若
a
b
=
b
c
,且
c
b
+
c
2
=0,则△ABC的形状是
等腰直角三角形
等腰直角三角形

查看答案和解析>>

同步练习册答案