精英家教网 > 高中数学 > 题目详情
(2011•盐城二模)在平面直角坐标系xOy中,椭圆x2+
y2
4
=1在第一象限的部分为曲线C,曲线C在其上动点P(x0,y0)处的切线l与x轴和y轴的交点分别为A、B,且向量
OM
=
OA
+
OB

(1)求切线l的方程(用x0表示);
(2)求动点M的轨迹方程.
分析:(1)求导函数,可得切线斜率,从而可得切线l的方程;
(2)确定A,B的坐标,可得向量坐标,在利用消参法,即可得到动点M的轨迹方程.
解答:解:(1)因为y=2
1-x2
,所以y′═-
2x
1-x2
,(3分)
故切线l的方程为y-2
1-x02
=-
2x0
1-x02
(x-x0),即y=-
2x0
1-x02
x+
2
1-x02
.(5分)
(2)设A(x1,0)、B(0,y2),M(x,y)是轨迹上任一点,
在y=-
2x0
1-x02
x+
2
1-x02
中,令y=0,得x1=
1
x0

令x=0,得y2=
2
1-x02
,则由
OM
=
OA
+
OB
,得
x=
1
x0
y=
2
1-x02
(8分)
消去x0,得动点M的轨迹方程为
1
x2
+
4
y2
=1(x>1).(10分)
点评:本题考查导数知识的运用,考查向量知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•盐城二模)选修4-4:坐标系与参数方程
若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π3
),它们相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知a,b,c是非零实数,则“a,b,c成等比数列”是“b=
ac
”的
必要不充分
必要不充分
条件(从“充要”、“充分不必要”、“必要不充分”、“既不充分又不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在△ABC中,角A、B、C的所对边的长分别为a、b、c,且a=
5
,b=3,sinC=2sinA.
(Ⅰ)求c的值;
(Ⅱ)求 sin(2A-
π
3
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)已知f(x)=cosx,g(x)=sinx,记Sn=2
2n
k=1
f(
(k-1)π
2n
)
-
1
2n
2n
k=1
g(
(k-n-1)π
2n
)
,Tm=S1+S2+…+Sm,若Tm<11,则m的最大值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)在如图所示的多面体中,已知正三棱柱ABC-A1B1C1的所有棱长均为2,四边形ABCD是菱形.
(Ⅰ)求证:平面ADC1⊥平面BCC1B1
(Ⅱ)求该多面体的体积.

查看答案和解析>>

同步练习册答案