【题目】已知长方形, , ,以的中点为原点,建立如图所示的平面直角坐标系.
(1)求以为焦点,且过两点的椭圆的标准方程;
(2)在(1)的条件下,过点作直线与椭圆交于不同的两点,设,点坐标为,若,求的取值范围.
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:
(1)令,利用给出的参考数据求出关于的回归方程.(,精确到0.1)
参考数据:,,
其中,
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区对市民进行“经常使用共享单车与年龄关系”的调查统计,若将单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,抽取一个容量为200的样本,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”。使用次数为5次或不足5次的称为“不常使用单车用户”,已知“经常使用单车用户”有120人,其中是“年轻人”,已知“不常使用单车用户”中有是“年轻人”.
(1)请你根据已知的数据,填写下列列联表:
年轻人 | 非年轻人 | 合计 | |
经常使用单车用户 | |||
不常使用单车用户 | |||
合计 |
(2)请根据(1)中的列联表,计算值并判断能否有的把握认为经常使用共享单车与年龄有关?
(附:
当时,有的把握说事件与有关;当时,有的把握说事件与有关;当时,认为事件与是无关的)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )
A. 15种 B. 20种 C. 48种 D. 60种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.
(1)若甲投篮3次,求至少命中2次的概率;
(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次抽样调查中测得样本的6组数据,得到一个变量关于的回归方程模型,其对应的数值如下表:
2 | 3 | 4 | 5 | 6 | 7 | |
(1)请用相关系数加以说明与之间存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立关于的回归方程并预测当时,对应的值为多少(精确到).
附参考公式:回归方程中斜率和截距的最小二乘法估计公式分别为:
,,相关系数公式为:.
参考数据:
,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“均小于25”的概率;
(2)请根据3月2日至3月4日的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)所得的线性回归方程是否可靠?
(参考公式:回归直线方程为,其中, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com