精英家教网 > 高中数学 > 题目详情
在圆x2+y2=1上等可能的任取一点A,以OA(O为坐标原点)为终边的角为a,则使sina≥
1
2
的概率为(  )
A、
1
6
B、
5
6
C、
1
3
D、
2
3
分析:本题考查的知识点是几何概型的意义,关键是要找出满足条件sina≥
1
2
的图形测度,再代入几何概型计算公式求解.
解答:精英家教网解:本题利用几何概型求解.测度是弧长.
画出单位圆,如图,
根据题意可得,满足条件:“sina≥
1
2
”对应的弧,
其构成的区域是
1
3
个圆:
MN

则使sina≥
1
2
的概率为P=
MN
圆的周长
=
1
3

故选C.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
N(A)
N
求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是(
1
2
3
2
)
,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面xOy中,已知点A(3,2),点B在圆x2+y2=1上运动,动点P满足
AP
=
PB
,则点P的轨迹是(  )
A、圆B、椭圆C、抛物线D、直线

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)在平面直角坐标系xOy中,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,其焦点在圆x2+y2=1上.
(1)求椭圆的方程;
(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使
OM
=cosθ
OA
+sinθ
OB

(i)求证:直线OA与OB的斜率之积为定值;
(ii)求OA2+OB2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,DP⊥x轴,点M在DP的延长线上,且|DM|=2|DP|.当点P在圆x2+y2=1上运动时.
(I)求点M的轨迹C的方程;
(Ⅱ)过点T(0,t)作圆x2+y2=1的切线l交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标.

查看答案和解析>>

同步练习册答案