分析 (1)求出函数的导数,得到关于a,b的方程组,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.
解答 解:(1)∵f′(x)=-3x2+2ax+b,
由已知得$\left\{\begin{array}{l}{f′(-1)=0}\\{f′(\frac{2}{3})=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-3-2a+b=0}\\{-\frac{4}{3}+\frac{4}{3}a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=2}\end{array}\right.$;
(2)f(x)=-x3-$\frac{1}{2}$x2+2x,
f′(x)=-3x2-x+2,
令f′(x)>0,解得:-1<x<$\frac{2}{3}$,
令f′(x)<0,解得:x>$\frac{2}{3}$或x<-1,
故f(x)在(-∞,-1)递减,在(-1,$\frac{2}{3}$)递增,在($\frac{2}{3}$,+∞)递减.
点评 本题考查了导数的应用,函数的单调性问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(2\sqrt{2},+∞)$ | B. | $(4-2\sqrt{2},+∞)$ | C. | (4,+∞) | D. | $(4+2\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1) | |
B. | 1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1) | |
C. | 1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1) | |
D. | 1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 有两个面平行,其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行的几何体叫棱柱 | |
B. | 圆锥的过轴的截面是一个等腰三角形 | |
C. | 直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥 | |
D. | 圆台平行于底面的截面是圆面 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com