精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=-x3+ax2+bx在x=-1处取得极小值,在x=$\frac{2}{3}$处取得极大值
(1)求实数a,b的值;
(2)求f(x)的单调性.

分析 (1)求出函数的导数,得到关于a,b的方程组,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:(1)∵f′(x)=-3x2+2ax+b,
由已知得$\left\{\begin{array}{l}{f′(-1)=0}\\{f′(\frac{2}{3})=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-3-2a+b=0}\\{-\frac{4}{3}+\frac{4}{3}a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=2}\end{array}\right.$;
(2)f(x)=-x3-$\frac{1}{2}$x2+2x,
f′(x)=-3x2-x+2,
令f′(x)>0,解得:-1<x<$\frac{2}{3}$,
令f′(x)<0,解得:x>$\frac{2}{3}$或x<-1,
故f(x)在(-∞,-1)递减,在(-1,$\frac{2}{3}$)递增,在($\frac{2}{3}$,+∞)递减.

点评 本题考查了导数的应用,函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知A、B、C为△ABC的内角,tanA、tanB是关于x的方程x2+$\sqrt{3}$mx-m+1=0的两个实根.
(1)求C的大小;
(2)若AB=$\sqrt{6}$,AC=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,满足“f(mn)=f(m)+f(n)”的函数是(  )
A.f(x)=xB.f(x)=x2C.f(x)=2xD.f(x)=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(2x-$\frac{π}{4}$)+1,x∈R.
(1)求f($\frac{π}{8}$)的值,并求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x2-b|x|+c,g(x)=kx+c-2(k>0),函数h(x)=f(x)-g(x),若f(-4)=f(0),f(-2)=-2,则当函数h(x)的零点个数为2时,k的取值范围为(  )
A.$(2\sqrt{2},+∞)$B.$(4-2\sqrt{2},+∞)$C.(4,+∞)D.$(4+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各值.
(1)若($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)n的展开式中第9项与第10项的二项式系数相等,求x的一次项系数;
(2)已知(2x-1)7=a0x7+a1x6+a2x5+…+a7,求a1+a3+a5+a7的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在用数学归纳法证明等式1+2+3+…+2n-1=2n2-n(n∈N*)的第(ii)步中,假设n=k(k≥1,k∈N*)时原等式成立,则当n=k+1时需要证明的等式为(  )
A.1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
B.1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1)
C.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
D.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法不正确的是(  )
A.有两个面平行,其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行的几何体叫棱柱
B.圆锥的过轴的截面是一个等腰三角形
C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
D.圆台平行于底面的截面是圆面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的极坐标方程是ρ-4sinθ=0.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{3π}{4}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于A、B两点,求|MA|+|MB|.

查看答案和解析>>

同步练习册答案