精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,点P为抛物线C上一点,O为坐标原点,.

1)求抛物线C的方程;

2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线CAB两点记的面积分别为,求的取值范围.

【答案】12

【解析】

(1)根据可知直线的倾斜角为,再利用几何关系求得,代入抛物线方程化简即可.

(2)设直线的方程为,再分别计算关于的表达式,进而求得关于的表达式再求范围即可.

解:(1)由题可知,直线的倾斜角为,,

代入方程可得,化简得,因为所以

故抛物线C的方程为

2)显然直线斜率不为0,故设直线的方程为,

联立.设.则,.所以

则因为直线垂直于OQ.故.所以

到直线的距离.

.

.

,

当且仅当时取等号.,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】纹样是中国艺术宝库的瑰宝,火纹是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的纵坐标不变,横坐标变为原来的,再将所得图象向右平移个单位,若得到的图象关于原点对称,则当时,的值域为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的棱长均为2OAC的中点,平面A'OB平面ABC,平面平面ABC.

1)求证:A'O⊥平面ABC

2)求二面角ABCC'的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局服务业调查中心和中国物流与采购联合会发布的201810月份至20199月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是(

A.12个月的PMI值不低于50%的频率为

B.12个月的PMI值的平均值低于50%

C.12个月的PMI值的众数为49.4%

D.12个月的PMI值的中位数为50.3%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,,四边形是矩形,平面平面.

1)证明:平面

2)若二面角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】角中,角ABC的对边分别是abc,若

1)求角A

2)若的面积为,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,函数.

(1)当时,求函数的零点个数;

(2)若函数与函数的图象分别位于直线的两侧,求的取值集合

(3)对于,求的最小值.

查看答案和解析>>

同步练习册答案