【题目】已知为奇函数,为偶函数,且.
(1)求及的解析式及定义域;
(2)如函数在区间上为单调函数,求实数的范围.
(3)若关于的方程有解,求实数的取值范围.
【答案】(1),;(2)或;(3).
【解析】试题
(1)依题意,由 ,即可求得 及解析式;(2)因为 ,所以 ,由二次函数的性质可知,要使函数 在区间 上为单调函数,,只要 或即可,由此即可求出结果;(3)因为,所以,然后再进行换元,令, 因为的定义域为,,可得,则,由于关于的方程有解,则,由此即可求出结果.
试题解析:(1)因为是奇函数,是偶函数,
所以,,
,①
令取代入上式得,
即,②
联立①②可得,,
.
(2)因为,
所以,
因为函数在区间上为单调函数,
所以或,
所以所求实数的取值范围为:或.
(3)因为,
所以,
设,
则 ,
因为的定义域为, ,
所以,,
即,则 ,
因为关于的方程有解,则,
故的取值范围为 .
科目:高中数学 来源: 题型:
【题目】已知函数(为实数,,).
(1)当函数的图象过点,且方程有且只有一个根,求的表达式;
(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;
(3)若,当,,,且函数为偶函数时,试判断能否大于?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,若存在闭区间,使得函数满足:①在
上是单调函数;②在 上的值域是,则称区间是函数 的“和谐区间”,
下列结论错误的是( )
A.函数 存在 “和谐区间”
B.函数 存在 “和谐区间”
C.函数 不存在 “和谐区间”
D.函数 存在 “和谐区间”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:
其中,点为轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.
(1)求曲线段在图纸上对应函数的解析式,并写出定义域;
(2)车辆从经倒爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量按照其质量指标值M进行等级划分,具体如下表:
质量指标值M | |||
等级 | 三等品 | 二等品 | 一等品 |
现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.
(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;
(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;
(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求的极值;
(2)是否存在实数,使得与的单调区间相同,若存在,求出的值,若不存在,请说明理由;
(3)若,求证:在上恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形PBCD中, ,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。
(1)求证: 平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com