精英家教网 > 高中数学 > 题目详情

【题目】已知为奇函数,为偶函数,且.

1)求的解析式及定义域;

2)如函数在区间上为单调函数,求实数的范围.

3)若关于的方程有解,求实数的取值范围.

【答案】1;(2;(3).

【解析】试题

(1)依题意,由 ,即可求得解析式;(2)因为 ,所以 ,由二次函数的性质可知,要使函数 在区间 上为单调函数,,只要即可,由此即可求出结果;(3)因为,所以,然后再进行换元,令, 因为的定义域为,可得,则,由于关于的方程有解,则,由此即可求出结果.

试题解析:(1)因为是奇函数,是偶函数,

所以

代入上式得

联立①②可得,

.

(2)因为

所以

因为函数在区间上为单调函数

所以

所以所求实数的取值范围为:.

(3)因为

所以

因为的定义域为

所以

,则

因为关于的方程有解,则

的取值范围为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,试讨论函数的单调性;

(Ⅱ)设,当对任意的恒成立时,求函数的最大值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数,.

1)当函数的图象过点,且方程有且只有一个根,求的表达式;

2)在(1)的条件下,当时,是单调函数,求实数的取值范围;

3)若,当,且函数为偶函数时,试判断能否大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为若存在闭区间使得函数满足

上是单调函数 上的值域是,则称区间是函数 和谐区间

下列结论错误的是

A.函数 存在 和谐区间

B.函数 存在 和谐区间

C.函数 存在 和谐区间

D.函数 存在 和谐区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:

其中,点轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.

(1)求曲线段在图纸上对应函数的解析式,并写出定义域;

(2)车辆从爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:游客踏乘;蓄电池动力;内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为,一边所在直线的方程为,求其他三边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量按照其质量指标值M进行等级划分,具体如下表:

质量指标值M

等级

三等品

二等品

一等品

现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M进行统计分析,得到如图所示的频率分布直方图.

(1)记A表示事件“一件这种产品为二等品或一等品”,试估计事件A的概率;

(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;

(3)根据该产品质量指标值M的频率分布直方图,求质量指标值M的中位数的估计值(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的极值;

(2)是否存在实数,使得的单调区间相同,若存在,求出的值,若不存在,请说明理由;

(3)若,求证:上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形PBCD中, APD的中点,如下左图。将沿AB折到的位置,使,点ESD上,且,如下图。

1)求证: 平面ABCD

2)求二面角E—AC—D的正切值.

查看答案和解析>>

同步练习册答案