【题目】已知函数.
(1)讨论函数在上的单调性;
(2)当时,若时,求证:.
【答案】(1)当时,函数在上单调递增;当时,函数在上单调递减;当时,函数在上单调递增,在上单调递减;(2)证明见解析.
【解析】
(1)对求导后讨论的范围来判断单调性;
(2)构造函数,借助得到,设,使得,设,根据该函数性质即可证明
(1)由题意可知,,,
(i)当时,恒成立,
所以函数在上单调递增;
(ii)当时,令,得,
①当,即时,在上恒成立,
所以函数在上单调递减;
②当,即时,
在上,,函数在上单调递增;
在上,,函数在上单调递减.
综上所述,当时,函数在上单调递增;
当时,函数在上单调递减;
当时,函数在上单调递增,在上单调递减.
(2)证明:令,
由题意可得,不妨设.
所以,于是.
令,,则,
,.
令,
则,在上单调递增,
因为,所以,且,
所以,即.
科目:高中数学 来源: 题型:
【题目】为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.
根据该折线图,下列结论正确的是
A. 2016年各月的仓储指数最大值是在3月份
B. 2017年1月至12月的仓储指数的中位数为54%
C. 2017年1月至4月的仓储指数比2016年同期波动性更大
D. 2017年11月的仓储指数较上月有所回落,显示出仓储业务活动仍然较为活跃,经济运行稳中向好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的函数,且对任意实数x,有f(x﹣2)=x2﹣3x+3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若{x|f(x﹣2)=﹣(a+2)x+3﹣b}={a},求a和b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1,F2,离心率为,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请解决下列问题:
(1)设直棱柱的高为,底面多边形的周长为,写出直棱柱的侧面积计算公式;
(2)设正棱锥的底面周长为,斜高为,写出正棱锥的侧面积计算公式;
(3)设正棱台的下底面周长为,上底面周长为,斜高为,写出正棱台的侧面积计算公式;
(4)写出上述个侧面积计算公式之间的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com