精英家教网 > 高中数学 > 题目详情

【题目】已知函数 的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间 上的单调性.

【答案】
(1)解:函数

化简得Lf(x)=4cosωx( cosωx﹣ sinωx)=2cos2ωx﹣ sin2ωx=1+cos2ωx﹣ sin2ωx=2cos(2ωx )+1.

因为函数 的最小正周期为π,即T=

解得:ω=1,

则:f(x)=2cos(2x )+1.

故得ω的值为1


(2)解:由(1)可得f(x)=2cos(2x )+1.

当x在区间 上时,故得:

时,即 时,函数f(x)=2cos(2x )+1为减函数.

当π 时,即 时,函数f(x)=2cos(2x )+1为增函数.

所以,函数f(x)=2cos(2x )+1为减区间为 ,增区间为


【解析】(1)将函数进行化简,再利用周期公式求ω的值.(2)当x在区间 上时,求出内层函数的取值范围,结合三角函数的图象和性质,求单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1L2两条巷道通往作业区(如下图),L1巷道有A1A2A3三个易堵塞点,各点被堵塞的概率都是L2巷道有B1B2两个易堵塞点,被堵塞的概率分别为.

(1)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;

(2)若L2巷道中堵塞点个数为X,求X的分布列及均值E(X),并按照“平均堵塞点少的巷道是较好的抢险路线”的标准,请你帮助救援队选择一条抢险路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的各项均为正数,a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+ + +…+ + ,参照教材上推导等比数列前n项和公式的推导方法,求证:{ Tn ﹣6n}是一个常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y= cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间进行分组,得到概率分布直方图,如图所示.

(1)根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.

(2)用分层抽样的方法从重量在的柚子中共抽取5个,其中重量在的有几个?

(3)在(2)中抽出的5个柚子中,任取2人,求重量在的柚子最多有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C的对边分别是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在-岁之间的人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:.把年龄落在区间内的人分别称为“青少年”和“中老年”.

关注

不关注

合计

青少年

中老年

合计

(1)根据频率分布直方图求样本的中位数保留两位小数和众数;

(2)根据已知条件完成列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,若n=4时,则输出的结果为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1 , C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.

查看答案和解析>>

同步练习册答案