【题目】已知函数.
(1)当函数在点处的切线方程为,求函数的解析式;
(2)在(1)的条件下,若是函数的零点,且,求的值;
(3)当时,函数有两个零点,且,求证:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.
(1)求直线的极坐标方程及曲线C的直角坐标方程;
(2)若是直线上的一点,是曲线C上的一点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,,点,是椭圆的左右顶点,点是椭圆上一动点,的周长为6,且直线,的斜率之积为.
(1)求椭圆的方程;
(2)若、为椭圆上位于轴同侧的两点,且,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,
(1)求函数f(x)过(﹣1,﹣2)的切线的方程
(2)过点P(1,t)存在两条直线与曲线y=f(x)相切,求t的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com