精英家教网 > 高中数学 > 题目详情
2.经调查,某地居民家庭年饮食支出y(单位:千元)对家庭年收入(单位:千元)的回归直线方程y=2.5x+3.2.据此分析,该地居民家庭年收入每增加到1千元,年饮食支出(  )
A.平均增加2.5千元B.平均减少2.5千元C.平均增加3.2千元D.平均减少3.2千元

分析 写出当自变量增加1时的预报值,用这个预报值去减去自变量x对应的值,即可得到家庭年收入每增加1万元,年饮食支出平均增加的数字.

解答 解:∵y关于x的线性回归直线方程:y=2.5x+3.2①
∴年收入增加l万元时,年饮食支出y=2.5(x+1)+3.2②
②-①可得:年饮食支出平均增加2.5万元
故选:A.

点评 本题考查线性回归方程,考查线性回归方程的应用,用来预报当自变量取某一个数值时对应的y的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=-11,2an=2an-1+3(n≥2),Sn为数列{an}的前n项和,则Sn的最小值为-46.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{7}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中正视图与俯视图均是半径为1的圆,则这个几何体的表面积是(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AD,底面ABCD为正方形,E为DP的中点,AF⊥PC于F.
(Ⅰ)求证:PC⊥平面AEF;
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的体积为2$\sqrt{3}$,求点A到平面A1B1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,矩形ABCD中,AB=1,BC=2,半圆O以BC为直径,平面ABCD垂直于半圆O所在的平面,P为半圆周上任意一点(与B、C不重合).
(1)求证:平面PAC⊥平面PAB;
(2)若P为半圆周中点,求此时二面角P-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1,圆心角为$\frac{π}{2}$的扇形,则该几何体的表面积为(  )
A.$\frac{3π}{4}$+$\sqrt{3}$B.$\frac{π}{2}$+$\sqrt{3}$C.$\frac{{\sqrt{3}π}}{12}$D.$\frac{{\sqrt{3}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若不等式(x+m22+(x+am-3)2>$\frac{1}{2}$对任意的x∈R,m∈[1,3]恒成立,则实数a的取值范围是a<2$\sqrt{2}$或a>5.

查看答案和解析>>

同步练习册答案