精英家教网 > 高中数学 > 题目详情
12.若f(x)是定义在R上的奇函数,满足f(x+1)=f(x-1),当x∈(0,1)时,f(x)=2x-2,则f(log${\;}_{\frac{1}{2}}$24)的值等于(  )
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 由f(x+1)=f(x-1)化简后求出函数的周期,利用奇函数的性质、函数的周期性、对数的运算性质化简和转化f(log${\;}_{\frac{1}{2}}$24),代入已知的解析式由指数的运算性质求值即可.

解答 解:∵f(x+1)=f(x-1),∴f(x+2)=f(x),
则函数f(x)的周期是2,
∵f(x)是定义在R上的奇函数,
∴f(log${\;}_{\frac{1}{2}}$24)=f(-$lo{g}_{2}^{24}$)=-f($lo{g}_{2}^{24}$)
=-f($lo{g}_{2}^{(8×3)}$)=-f(3+$lo{g}_{2}^{3}$)=-f(-1+$lo{g}_{2}^{3}$)
∵1<$lo{g}_{2}^{3}$<2,∴0<-1+$lo{g}_{2}^{3}$<1,
∵当x∈(0,1)时,f(x)=2x-2,
∴f(-1+$lo{g}_{2}^{3}$)=${2}^{-1+lo{g}_{2}^{3}}-2$=$\frac{3}{2}$-2=$-\frac{1}{2}$,
即f(log${\;}_{\frac{1}{2}}$24)=$\frac{1}{2}$,
故选C.

点评 本题考查奇函数的性质,函数的周期性,以及指数、对数的运算性质的综合应用,考查转化思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{2x+1}{x+1}$
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论
(2)求该函数在区间[2,4]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若q是p的充分条件,则a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x4+2x2是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F在棱CC1上,且CF=2FC1,P是侧面四边形BCC1B1内一点(含边界),若A1P∥平面AEF,则直线A1P与面BCC1B1所成角的正弦值的取值范围是(  )
A.$[\frac{{2\sqrt{5}}}{5},\frac{{5\sqrt{29}}}{29}]$B.$[\frac{{3\sqrt{13}}}{13},\frac{{5\sqrt{29}}}{29}]$C.$[\frac{{3\sqrt{13}}}{13},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的S值为(  )
A.2017B.2C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥S-ABCD中,已知SC⊥平面ABCD,底面ABCD是边长为4$\sqrt{2}$的菱形,∠BCD=60°,SC=2,E为BC的中点,若点P在SE上移动,则△PCA面积的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设定义在R上的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|},x≠2}\\{1,x=2}\end{array}\right.$,若关于x的方程f2(x)+af(x)+b=0有三个不同的实数解x1,x2,x3,且x1<x2<x3,则下列说法中错误的是(  )
A.x12+x22+x32=14B.1+a+b=0C.a2-4b=0D.x1+x3=0

查看答案和解析>>

同步练习册答案