【题目】浦东一模之后的“大将” 洗心革面,再也没进过网吧,开始发奋学习. 2019年春节档非常热门的电影《流浪地球》引发了他的思考:假定地球(设为质点,地球半径忽略不计)借助原子发动机开始流浪的轨道是以木星(看作球体,其半径约为万米)的中心为右焦点的椭圆. 已知地球的近木星点(轨道上离木星表面最近的点)到木星表面的距离为万米,远木星点(轨道上离木星表面最远的点)到木星表面的距离为万米.
(1)求如图给定的坐标系下椭圆的标准方程;
(2)若地球在流浪的过程中,由第一次逆时针流浪到与轨道中心的距离为万米时(其中分别为椭圆的长半轴、短半轴的长),由于木星引力,部分原子发动机突然失去了动力,此时地球向着木星方向开始变轨(如图所示),假定地球变轨后的轨道为一条直线,称该直线的斜率为“变轨系数”. 求“变轨系数”的取值范围,使地球与木星不会发生碰撞. (精确到小数点后一位)
科目:高中数学 来源: 题型:
【题目】受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
品牌 | 甲 | 乙 | |||
首次出现故 障时间x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润 (万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率.
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列.
(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆为其左右焦点,为其上下顶点,四边形的面积为.点为椭圆上任意一点,以为圆心的圆(记为圆)总经过坐标原点.
(1)求椭圆的长轴的最小值,并确定此时椭圆的方程;
(2)对于(1)中确定的椭圆,若给定圆,则圆和圆的公共弦的长是否为定值?如果是,求的值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
候车时间 | 人数 |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个数列的各项是1和2,首项是1,且在第个1和第个1之间有个2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1…,则此数列的前2017项的和______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设为不同的两点,直线的方程为,设,其中均为实数.下列四个说法中:
①存在实数,使点在直线上;
②若,则过两点的直线与直线重合;
③若,则直线经过线段的中点;
④若,则点在直线的同侧,且直线与线段的延长线相交.
所有结论正确的说法的序号是______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com